Cargando…
Establishment of Anti-Human ATRX Monoclonal Antibody AMab-6
Gliomas are the most frequently occurring brain tumors with a heterogeneous molecular background. The molecular subgrouping of gliomas more prognostically stratifies patients into distinct groups compared with conventional histological classification. The most important molecules for the subtype dia...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5160166/ https://www.ncbi.nlm.nih.gov/pubmed/27788029 http://dx.doi.org/10.1089/mab.2016.0037 |
Sumario: | Gliomas are the most frequently occurring brain tumors with a heterogeneous molecular background. The molecular subgrouping of gliomas more prognostically stratifies patients into distinct groups compared with conventional histological classification. The most important molecules for the subtype diagnosis of diffuse gliomas are mutations of isocitrate dehydrogenase (IDH), TERT promoter, and α-thalassemia/mental-retardation-syndrome-X-linked (ATRX) and the codeletion of 1p/19q. Among them, IDH and ATRX mutations can be diagnosed using specific monoclonal antibodies (mAbs). We have developed many mAbs against IDH mutants, including HMab-1/HMab-2 against IDH1-R132H and multispecific mAbs MsMab-1/MsMab-2 against IDH1/2 mutations. In contrast, highly sensitive mAbs against ATRX remain to be established. In this study, we immunized mice with recombinant human ATRX and developed a novel mAb, AMab-6. The dissociation constant of AMab-6 was determined to be 9.7 × 10(−10) M, indicating that the binding affinity of AMab-6 is very high. Furthermore, AMab-6 sensitively detects ATRX in Western blot and immunohistochemical analyses, indicating that AMab-6 could become the standard marker to determine the ATRX mutation status of gliomas in immunohistochemical analyses. |
---|