Cargando…

Similar promotion of Aβ(1-42 )fibrillogenesis by native apolipoprotein E ε3 and ε4 isoforms

The apolipoprotein E ε4 allele contributes to the genetic susceptibility underlying a large proportion (~40–60%) of typical, sporadic Alzheimer disease. Apolipoprotein E deficient mice made transgenic for human apolipoprotein E ε4 accumulate excess cerebral amyloid when compared to similarly prepare...

Descripción completa

Detalles Bibliográficos
Autores principales: Sweeney, David, Martins, Ralph, LeVine, Harry, Smith, Jonathan D, Gandy, Sam
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC516045/
https://www.ncbi.nlm.nih.gov/pubmed/15312232
http://dx.doi.org/10.1186/1742-2094-1-15
Descripción
Sumario:The apolipoprotein E ε4 allele contributes to the genetic susceptibility underlying a large proportion (~40–60%) of typical, sporadic Alzheimer disease. Apolipoprotein E deficient mice made transgenic for human apolipoprotein E ε4 accumulate excess cerebral amyloid when compared to similarly prepared mice expressing human apolipoprotein E ε3. Therefore, it is important to search for relevant interactions(s) between apolipoprotein E ε4 and Aβ in order to clarify the biological role for apolipoprotein E ε4 in Alzheimer disease. Using a thioflavine T (ThT)-based assay, we have investigated the effects of native human apolipoprotein E isoforms on the kinetics of Aβ fibrillogenesis. No obvious profibrillogenic activity was detected in Aβ(1-40)-based assays of any native apolipoprotein E isoform. However, when ThT assays were repeated using Aβ(1-42), modest, but statistically significant, profibrillogenic activity was detected in both apolipoprotein E ε3- and apolipoprotein E ε4-containing media and was similar in magnitude for the two isoforms. These data demonstrate that native apolipoprotein E possesses "pathological chaperone"-type activity for Aβ: in other words, the data indicate that a chaperone-like misfolding reaction can occur between native apolipoprotein E and Aβ. However, the equipotent activities of the apolipoprotein E ε3 and ε4 isoforms suggests the possibility that either extended co-incubation of apolipoprotein E and Aβ, or, perhaps, the inclusion in the reaction of other fibrillogenesis-modulation co-factors (such as metal ions, or inflammatory mediators such as reactive oxygen species, α(2)-macroglobulin, apolipoprotein J, etc.) may be required for modeling in vitro the apolipoprotein E-isoform-specific-regulation of extracellular Aβ accumulation that occurs in vivo. Alternatively, other events, such as differential apolipoprotein E-isoform-mediated clearance of Aβ or of apolipoprotein E/Aβ complexes may underlie apolipoprotein E-isoform-dependent Aβ accumulation.