Cargando…

Dosimetric Study of Automatic Brain Metastases Planning in Comparison with Conventional Multi-Isocenter Dynamic Conformal Arc Therapy and Gamma Knife Radiosurgery for Multiple Brain Metastases

OBJECTIVE: The efficacy of stereotactic radiosurgery (SRS) using Gamma Knife (GK) (Elekta, Tokyo) is well known. Recently, Automatic Brain Metastases Planning (ABMP) Element (BrainLAB, Tokyo) for a LINAC-based radiation system was commercially released. It covers multiple off-isocenter targets simul...

Descripción completa

Detalles Bibliográficos
Autores principales: Mori, Yoshimasa, Kaneda, Naoki, Hagiwara, Masahiro, Ishiguchi, Tuneo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161262/
https://www.ncbi.nlm.nih.gov/pubmed/28003946
http://dx.doi.org/10.7759/cureus.882
Descripción
Sumario:OBJECTIVE: The efficacy of stereotactic radiosurgery (SRS) using Gamma Knife (GK) (Elekta, Tokyo) is well known. Recently, Automatic Brain Metastases Planning (ABMP) Element (BrainLAB, Tokyo) for a LINAC-based radiation system was commercially released. It covers multiple off-isocenter targets simultaneously inside a multi-leaf collimator field and enables SRS / stereotactic radiotherapy (SRT) with a single group of LINAC-based dynamic conformal multi-arcs (DCA) for multiple brain metastases. In this study, dose planning of ABMP (ABMP-single isocenter DCA (ABMP-SIDCA)) for SRS of small multiple brain metastases was evaluated in comparison with those of conventional multi-isocenter DCA (MIDCA-SRS) (iPlan, BrainLAB, Tokyo) and GK-SRS (GKRS). METHODS: Simulation planning was performed with ABMP-SIDCA and GKRS in the two cases of multiple small brain metastases (nine tumors in both), which had been originally treated with iPlan-MIDCA. First, a dosimetric comparison was done between ABMP-SIDCA and iPlan-MIDCA in the same setting of planning target volume (PTV) margin and D95 (dose covering 95% of PTV volume). Second, dosimetry of GKRS with a margin dose of 20 Gy was compared with that of ABMP-SIDCA in the setting of PTV margin of 0, 1 mm, and 2 mm, and D95=100% dose (20 Gy). RESULTS: First, the maximum dose of PTV and minimum dose of gross tumor volume (GTV) were significantly greater in ABMP-SIDCA than in iPlan-MIDCA. Conformity index (CI, 1/Paddick’s CI) and gradient index (GI, V (half of prescription dose) / V (prescription dose)) in ABMP-SIDCA were comparable with those of iPlan-MIDCA. Second, PIV (prescription isodose volume) of GKRS was consistent with that of 1 mm margin - ABMP-SIDCA plan in Case 1 and that of no-margin ABMP-SIDCA plan in Case 2. Considering the dose gradient, the mean of V (half of prescription dose) of ABMP-SIDCA was not broad, comparable to GKRS, in either Case 1 or 2. CONCLUSIONS: The conformity and dose gradient with ABMP-SIDCA were as good as those of conventional MIDCA for each lesion. If the conditions of the LINAC system permit a minimal PTV margin (1 mm or less), ABMP-SIDCA might provide excellent dose fall-off comparable with that of GKRS thereby enabling a short treatment time.