Cargando…

Molecular Characterization and Functional Analysis of a Putative Octopamine/Tyramine Receptor during the Developmental Stages of the Pacific Oyster, Crassostrea gigas

Octopamine (OA) and its precursor, tyramine (TA), participate in invertebrate development such as growth, maturation, and reproduction by activating their corresponding G protein-coupled receptors (GPCRs). Although OA was first discovered in mollusks (octopus), subsequent studies on OA, TA and relat...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Peng, Xu, Fei, Huang, Baoyu, Li, Yingxiang, Li, Li, Zhang, Guofan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161484/
https://www.ncbi.nlm.nih.gov/pubmed/27992549
http://dx.doi.org/10.1371/journal.pone.0168574
_version_ 1782482089321431040
author Ji, Peng
Xu, Fei
Huang, Baoyu
Li, Yingxiang
Li, Li
Zhang, Guofan
author_facet Ji, Peng
Xu, Fei
Huang, Baoyu
Li, Yingxiang
Li, Li
Zhang, Guofan
author_sort Ji, Peng
collection PubMed
description Octopamine (OA) and its precursor, tyramine (TA), participate in invertebrate development such as growth, maturation, and reproduction by activating their corresponding G protein-coupled receptors (GPCRs). Although OA was first discovered in mollusks (octopus), subsequent studies on OA, TA and related receptors have primarily been conducted in Ecdysozoa, especially in insects. Accordingly, only limited reports on OA/TA receptors in mollusks are available and their physiological roles remain unclear. Here, a full-length cDNA encoding a putative 524 amino acid OA/TA receptor (CgGPR1) was isolated from the Pacific oyster Crassostrea gigas. CgGPR1 was most closely related to the Lymnaea stagnalis OA receptor OAR2 in sequence. Phylogenetic analysis showed that CgGPR1 belongs to a poorly studied subfamily of invertebrate OA/TA receptors. The spatio-temporal expression of CgGPR1 in C. gigas larvae was examined by quantitative real-time PCR and Western blot analysis. CgGPR1 was expressed during all developmental stages of C. gigas with higher levels at mid-developmental stages, indicating its potential role in embryogenesis and tissue differentiation. Immunoreactive fluorescence of CgGPR1 was mainly observed in the velum, foot, gill and mantle of C. gigas larvae. CgGPR1 transcripts were detected in all the tested organs of adult C. gigas, with highest level in the mantle. Pharmacological analysis showed that cAMP and Ca(2+) concentrations remained unchanged in HEK293 cells expressing CgGPR1 upon addition of OA, TA or related amines, suggesting that CgGPR1 modulates other unknown molecules rather than cAMP and Ca(2+). Our study sheds light on CgGPR1 function in oysters.
format Online
Article
Text
id pubmed-5161484
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-51614842017-01-04 Molecular Characterization and Functional Analysis of a Putative Octopamine/Tyramine Receptor during the Developmental Stages of the Pacific Oyster, Crassostrea gigas Ji, Peng Xu, Fei Huang, Baoyu Li, Yingxiang Li, Li Zhang, Guofan PLoS One Research Article Octopamine (OA) and its precursor, tyramine (TA), participate in invertebrate development such as growth, maturation, and reproduction by activating their corresponding G protein-coupled receptors (GPCRs). Although OA was first discovered in mollusks (octopus), subsequent studies on OA, TA and related receptors have primarily been conducted in Ecdysozoa, especially in insects. Accordingly, only limited reports on OA/TA receptors in mollusks are available and their physiological roles remain unclear. Here, a full-length cDNA encoding a putative 524 amino acid OA/TA receptor (CgGPR1) was isolated from the Pacific oyster Crassostrea gigas. CgGPR1 was most closely related to the Lymnaea stagnalis OA receptor OAR2 in sequence. Phylogenetic analysis showed that CgGPR1 belongs to a poorly studied subfamily of invertebrate OA/TA receptors. The spatio-temporal expression of CgGPR1 in C. gigas larvae was examined by quantitative real-time PCR and Western blot analysis. CgGPR1 was expressed during all developmental stages of C. gigas with higher levels at mid-developmental stages, indicating its potential role in embryogenesis and tissue differentiation. Immunoreactive fluorescence of CgGPR1 was mainly observed in the velum, foot, gill and mantle of C. gigas larvae. CgGPR1 transcripts were detected in all the tested organs of adult C. gigas, with highest level in the mantle. Pharmacological analysis showed that cAMP and Ca(2+) concentrations remained unchanged in HEK293 cells expressing CgGPR1 upon addition of OA, TA or related amines, suggesting that CgGPR1 modulates other unknown molecules rather than cAMP and Ca(2+). Our study sheds light on CgGPR1 function in oysters. Public Library of Science 2016-12-16 /pmc/articles/PMC5161484/ /pubmed/27992549 http://dx.doi.org/10.1371/journal.pone.0168574 Text en © 2016 Ji et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Ji, Peng
Xu, Fei
Huang, Baoyu
Li, Yingxiang
Li, Li
Zhang, Guofan
Molecular Characterization and Functional Analysis of a Putative Octopamine/Tyramine Receptor during the Developmental Stages of the Pacific Oyster, Crassostrea gigas
title Molecular Characterization and Functional Analysis of a Putative Octopamine/Tyramine Receptor during the Developmental Stages of the Pacific Oyster, Crassostrea gigas
title_full Molecular Characterization and Functional Analysis of a Putative Octopamine/Tyramine Receptor during the Developmental Stages of the Pacific Oyster, Crassostrea gigas
title_fullStr Molecular Characterization and Functional Analysis of a Putative Octopamine/Tyramine Receptor during the Developmental Stages of the Pacific Oyster, Crassostrea gigas
title_full_unstemmed Molecular Characterization and Functional Analysis of a Putative Octopamine/Tyramine Receptor during the Developmental Stages of the Pacific Oyster, Crassostrea gigas
title_short Molecular Characterization and Functional Analysis of a Putative Octopamine/Tyramine Receptor during the Developmental Stages of the Pacific Oyster, Crassostrea gigas
title_sort molecular characterization and functional analysis of a putative octopamine/tyramine receptor during the developmental stages of the pacific oyster, crassostrea gigas
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161484/
https://www.ncbi.nlm.nih.gov/pubmed/27992549
http://dx.doi.org/10.1371/journal.pone.0168574
work_keys_str_mv AT jipeng molecularcharacterizationandfunctionalanalysisofaputativeoctopaminetyraminereceptorduringthedevelopmentalstagesofthepacificoystercrassostreagigas
AT xufei molecularcharacterizationandfunctionalanalysisofaputativeoctopaminetyraminereceptorduringthedevelopmentalstagesofthepacificoystercrassostreagigas
AT huangbaoyu molecularcharacterizationandfunctionalanalysisofaputativeoctopaminetyraminereceptorduringthedevelopmentalstagesofthepacificoystercrassostreagigas
AT liyingxiang molecularcharacterizationandfunctionalanalysisofaputativeoctopaminetyraminereceptorduringthedevelopmentalstagesofthepacificoystercrassostreagigas
AT lili molecularcharacterizationandfunctionalanalysisofaputativeoctopaminetyraminereceptorduringthedevelopmentalstagesofthepacificoystercrassostreagigas
AT zhangguofan molecularcharacterizationandfunctionalanalysisofaputativeoctopaminetyraminereceptorduringthedevelopmentalstagesofthepacificoystercrassostreagigas