Cargando…
Striatal morphology correlates with frontostriatal electrophysiological motor processing in Huntington's disease: an IMAGE‐HD study
BACKGROUND: Huntington's disease (HD) causes progressive atrophy to the striatum, a critical node in frontostriatal circuitry. Maintenance of motor function is dependent on functional connectivity of these premotor, motor, and dorsolateral frontostriatal circuits, and structural integrity of th...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5167007/ https://www.ncbi.nlm.nih.gov/pubmed/28031992 http://dx.doi.org/10.1002/brb3.511 |
_version_ | 1782483120768942080 |
---|---|
author | Turner, Lauren M. Jakabek, David Wilkes, Fiona A. Croft, Rodney J. Churchyard, Andrew Walterfang, Mark Velakoulis, Dennis Looi, Jeffrey C. L. Georgiou‐Karistianis, Nellie Apthorp, Deborah |
author_facet | Turner, Lauren M. Jakabek, David Wilkes, Fiona A. Croft, Rodney J. Churchyard, Andrew Walterfang, Mark Velakoulis, Dennis Looi, Jeffrey C. L. Georgiou‐Karistianis, Nellie Apthorp, Deborah |
author_sort | Turner, Lauren M. |
collection | PubMed |
description | BACKGROUND: Huntington's disease (HD) causes progressive atrophy to the striatum, a critical node in frontostriatal circuitry. Maintenance of motor function is dependent on functional connectivity of these premotor, motor, and dorsolateral frontostriatal circuits, and structural integrity of the striatum itself. We aimed to investigate whether size and shape of the striatum as a measure of frontostriatal circuit structural integrity was correlated with functional frontostriatal electrophysiological neural premotor processing (contingent negative variation, CNV), to better understand motoric structure–function relationships in early HD. METHODS: Magnetic resonance imaging (MRI) scans and electrophysiological (EEG) measures of premotor processing were obtained from a combined HD group (12 presymptomatic, 7 symptomatic). Manual segmentation of caudate and putamen was conducted with subsequent shape analysis. Separate correlational analyses (volume and shape) included covariates of age, gender, intracranial volume, and time between EEG and MRI. RESULTS: Right caudate volume correlated with early CNV latency over frontocentral regions and late CNV frontally, whereas right caudate shape correlated with early CNV latency centrally. Left caudate volume correlated with early CNV latency over centroparietal regions and late CNV frontally. Right and left putamen volumes correlated with early CNV latency frontally, and right and left putamen shape/volume correlated with parietal CNV slope. CONCLUSIONS: Timing (latency) and pattern (slope) of frontostriatal circuit‐mediated premotor functional activation across scalp regions were correlated with abnormalities in structural integrity of the key frontostriatal circuit component, the striatum (size and shape). This was accompanied by normal reaction times, suggesting it may be undetected in regular tasks due to preserved motor “performance.” Such differences in functional activation may reflect atrophy‐based frontostriatal circuitry despecialization and/or compensatory recruitment of additional brain regions. |
format | Online Article Text |
id | pubmed-5167007 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-51670072016-12-28 Striatal morphology correlates with frontostriatal electrophysiological motor processing in Huntington's disease: an IMAGE‐HD study Turner, Lauren M. Jakabek, David Wilkes, Fiona A. Croft, Rodney J. Churchyard, Andrew Walterfang, Mark Velakoulis, Dennis Looi, Jeffrey C. L. Georgiou‐Karistianis, Nellie Apthorp, Deborah Brain Behav Original Research BACKGROUND: Huntington's disease (HD) causes progressive atrophy to the striatum, a critical node in frontostriatal circuitry. Maintenance of motor function is dependent on functional connectivity of these premotor, motor, and dorsolateral frontostriatal circuits, and structural integrity of the striatum itself. We aimed to investigate whether size and shape of the striatum as a measure of frontostriatal circuit structural integrity was correlated with functional frontostriatal electrophysiological neural premotor processing (contingent negative variation, CNV), to better understand motoric structure–function relationships in early HD. METHODS: Magnetic resonance imaging (MRI) scans and electrophysiological (EEG) measures of premotor processing were obtained from a combined HD group (12 presymptomatic, 7 symptomatic). Manual segmentation of caudate and putamen was conducted with subsequent shape analysis. Separate correlational analyses (volume and shape) included covariates of age, gender, intracranial volume, and time between EEG and MRI. RESULTS: Right caudate volume correlated with early CNV latency over frontocentral regions and late CNV frontally, whereas right caudate shape correlated with early CNV latency centrally. Left caudate volume correlated with early CNV latency over centroparietal regions and late CNV frontally. Right and left putamen volumes correlated with early CNV latency frontally, and right and left putamen shape/volume correlated with parietal CNV slope. CONCLUSIONS: Timing (latency) and pattern (slope) of frontostriatal circuit‐mediated premotor functional activation across scalp regions were correlated with abnormalities in structural integrity of the key frontostriatal circuit component, the striatum (size and shape). This was accompanied by normal reaction times, suggesting it may be undetected in regular tasks due to preserved motor “performance.” Such differences in functional activation may reflect atrophy‐based frontostriatal circuitry despecialization and/or compensatory recruitment of additional brain regions. John Wiley and Sons Inc. 2016-07-27 /pmc/articles/PMC5167007/ /pubmed/28031992 http://dx.doi.org/10.1002/brb3.511 Text en © 2016 The Authors. Brain and Behavior published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Turner, Lauren M. Jakabek, David Wilkes, Fiona A. Croft, Rodney J. Churchyard, Andrew Walterfang, Mark Velakoulis, Dennis Looi, Jeffrey C. L. Georgiou‐Karistianis, Nellie Apthorp, Deborah Striatal morphology correlates with frontostriatal electrophysiological motor processing in Huntington's disease: an IMAGE‐HD study |
title | Striatal morphology correlates with frontostriatal electrophysiological motor processing in Huntington's disease: an IMAGE‐HD study |
title_full | Striatal morphology correlates with frontostriatal electrophysiological motor processing in Huntington's disease: an IMAGE‐HD study |
title_fullStr | Striatal morphology correlates with frontostriatal electrophysiological motor processing in Huntington's disease: an IMAGE‐HD study |
title_full_unstemmed | Striatal morphology correlates with frontostriatal electrophysiological motor processing in Huntington's disease: an IMAGE‐HD study |
title_short | Striatal morphology correlates with frontostriatal electrophysiological motor processing in Huntington's disease: an IMAGE‐HD study |
title_sort | striatal morphology correlates with frontostriatal electrophysiological motor processing in huntington's disease: an image‐hd study |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5167007/ https://www.ncbi.nlm.nih.gov/pubmed/28031992 http://dx.doi.org/10.1002/brb3.511 |
work_keys_str_mv | AT turnerlaurenm striatalmorphologycorrelateswithfrontostriatalelectrophysiologicalmotorprocessinginhuntingtonsdiseaseanimagehdstudy AT jakabekdavid striatalmorphologycorrelateswithfrontostriatalelectrophysiologicalmotorprocessinginhuntingtonsdiseaseanimagehdstudy AT wilkesfionaa striatalmorphologycorrelateswithfrontostriatalelectrophysiologicalmotorprocessinginhuntingtonsdiseaseanimagehdstudy AT croftrodneyj striatalmorphologycorrelateswithfrontostriatalelectrophysiologicalmotorprocessinginhuntingtonsdiseaseanimagehdstudy AT churchyardandrew striatalmorphologycorrelateswithfrontostriatalelectrophysiologicalmotorprocessinginhuntingtonsdiseaseanimagehdstudy AT walterfangmark striatalmorphologycorrelateswithfrontostriatalelectrophysiologicalmotorprocessinginhuntingtonsdiseaseanimagehdstudy AT velakoulisdennis striatalmorphologycorrelateswithfrontostriatalelectrophysiologicalmotorprocessinginhuntingtonsdiseaseanimagehdstudy AT looijeffreycl striatalmorphologycorrelateswithfrontostriatalelectrophysiologicalmotorprocessinginhuntingtonsdiseaseanimagehdstudy AT georgioukaristianisnellie striatalmorphologycorrelateswithfrontostriatalelectrophysiologicalmotorprocessinginhuntingtonsdiseaseanimagehdstudy AT apthorpdeborah striatalmorphologycorrelateswithfrontostriatalelectrophysiologicalmotorprocessinginhuntingtonsdiseaseanimagehdstudy |