Cargando…
Phylogenetic congruence between subtropical trees and their associated fungi
Recent studies have detected phylogenetic signals in pathogen–host networks for both soil‐borne and leaf‐infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5167024/ https://www.ncbi.nlm.nih.gov/pubmed/28031793 http://dx.doi.org/10.1002/ece3.2503 |
_version_ | 1782483123688177664 |
---|---|
author | Liu, Xubing Liang, Minxia Etienne, Rampal S. Gilbert, Gregory S. Yu, Shixiao |
author_facet | Liu, Xubing Liang, Minxia Etienne, Rampal S. Gilbert, Gregory S. Yu, Shixiao |
author_sort | Liu, Xubing |
collection | PubMed |
description | Recent studies have detected phylogenetic signals in pathogen–host networks for both soil‐borne and leaf‐infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next‐generation high‐throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK, rbcL, atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host–fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant–fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant–fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities. |
format | Online Article Text |
id | pubmed-5167024 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-51670242016-12-28 Phylogenetic congruence between subtropical trees and their associated fungi Liu, Xubing Liang, Minxia Etienne, Rampal S. Gilbert, Gregory S. Yu, Shixiao Ecol Evol Original Research Recent studies have detected phylogenetic signals in pathogen–host networks for both soil‐borne and leaf‐infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next‐generation high‐throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK, rbcL, atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host–fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant–fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant–fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities. John Wiley and Sons Inc. 2016-10-26 /pmc/articles/PMC5167024/ /pubmed/28031793 http://dx.doi.org/10.1002/ece3.2503 Text en © 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Liu, Xubing Liang, Minxia Etienne, Rampal S. Gilbert, Gregory S. Yu, Shixiao Phylogenetic congruence between subtropical trees and their associated fungi |
title | Phylogenetic congruence between subtropical trees and their associated fungi |
title_full | Phylogenetic congruence between subtropical trees and their associated fungi |
title_fullStr | Phylogenetic congruence between subtropical trees and their associated fungi |
title_full_unstemmed | Phylogenetic congruence between subtropical trees and their associated fungi |
title_short | Phylogenetic congruence between subtropical trees and their associated fungi |
title_sort | phylogenetic congruence between subtropical trees and their associated fungi |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5167024/ https://www.ncbi.nlm.nih.gov/pubmed/28031793 http://dx.doi.org/10.1002/ece3.2503 |
work_keys_str_mv | AT liuxubing phylogeneticcongruencebetweensubtropicaltreesandtheirassociatedfungi AT liangminxia phylogeneticcongruencebetweensubtropicaltreesandtheirassociatedfungi AT etiennerampals phylogeneticcongruencebetweensubtropicaltreesandtheirassociatedfungi AT gilbertgregorys phylogeneticcongruencebetweensubtropicaltreesandtheirassociatedfungi AT yushixiao phylogeneticcongruencebetweensubtropicaltreesandtheirassociatedfungi |