Cargando…

Identifying multispecies synchrony in response to environmental covariates

The importance of multispecies models for understanding complex ecological processes and interactions is beginning to be realized. Recent developments, such as those by Lahoz‐Monfort et al. (2011), have enabled synchrony in demographic parameters across multiple species to be explored. Species in a...

Descripción completa

Detalles Bibliográficos
Autores principales: Swallow, Ben, King, Ruth, Buckland, Stephen T., Toms, Mike P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5167035/
https://www.ncbi.nlm.nih.gov/pubmed/28031803
http://dx.doi.org/10.1002/ece3.2518
_version_ 1782483125283061760
author Swallow, Ben
King, Ruth
Buckland, Stephen T.
Toms, Mike P.
author_facet Swallow, Ben
King, Ruth
Buckland, Stephen T.
Toms, Mike P.
author_sort Swallow, Ben
collection PubMed
description The importance of multispecies models for understanding complex ecological processes and interactions is beginning to be realized. Recent developments, such as those by Lahoz‐Monfort et al. (2011), have enabled synchrony in demographic parameters across multiple species to be explored. Species in a similar environment would be expected to be subject to similar exogenous factors, although their response to each of these factors may be quite different. The ability to group species together according to how they respond to a particular measured covariate may be of particular interest to ecologists. We fit a multispecies model to two sets of similar species of garden bird monitored under the British Trust for Ornithology's Garden Bird Feeding Survey. Posterior model probabilities were estimated using the reversible jump algorithm to compare posterior support for competing models with different species sharing different subsets of regression coefficients. There was frequently good agreement between species with small asynchronous random‐effect components and those with posterior support for models with shared regression coefficients; however, this was not always the case. When groups of species were less correlated, greater uncertainty was found in whether regression coefficients should be shared or not. The methods outlined in this study can test additional hypotheses about the similarities or synchrony across multiple species that share the same environment. Through the use of posterior model probabilities, estimated using the reversible jump algorithm, we can detect multispecies responses in relation to measured covariates across any combination of species and covariates under consideration. The method can account for synchrony across species in relation to measured covariates, as well as unexplained variation accounted for using random effects. For more flexible, multiparameter distributions, the support for species‐specific parameters can also be measured.
format Online
Article
Text
id pubmed-5167035
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-51670352016-12-28 Identifying multispecies synchrony in response to environmental covariates Swallow, Ben King, Ruth Buckland, Stephen T. Toms, Mike P. Ecol Evol Original Research The importance of multispecies models for understanding complex ecological processes and interactions is beginning to be realized. Recent developments, such as those by Lahoz‐Monfort et al. (2011), have enabled synchrony in demographic parameters across multiple species to be explored. Species in a similar environment would be expected to be subject to similar exogenous factors, although their response to each of these factors may be quite different. The ability to group species together according to how they respond to a particular measured covariate may be of particular interest to ecologists. We fit a multispecies model to two sets of similar species of garden bird monitored under the British Trust for Ornithology's Garden Bird Feeding Survey. Posterior model probabilities were estimated using the reversible jump algorithm to compare posterior support for competing models with different species sharing different subsets of regression coefficients. There was frequently good agreement between species with small asynchronous random‐effect components and those with posterior support for models with shared regression coefficients; however, this was not always the case. When groups of species were less correlated, greater uncertainty was found in whether regression coefficients should be shared or not. The methods outlined in this study can test additional hypotheses about the similarities or synchrony across multiple species that share the same environment. Through the use of posterior model probabilities, estimated using the reversible jump algorithm, we can detect multispecies responses in relation to measured covariates across any combination of species and covariates under consideration. The method can account for synchrony across species in relation to measured covariates, as well as unexplained variation accounted for using random effects. For more flexible, multiparameter distributions, the support for species‐specific parameters can also be measured. John Wiley and Sons Inc. 2016-11-04 /pmc/articles/PMC5167035/ /pubmed/28031803 http://dx.doi.org/10.1002/ece3.2518 Text en © 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/3.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Research
Swallow, Ben
King, Ruth
Buckland, Stephen T.
Toms, Mike P.
Identifying multispecies synchrony in response to environmental covariates
title Identifying multispecies synchrony in response to environmental covariates
title_full Identifying multispecies synchrony in response to environmental covariates
title_fullStr Identifying multispecies synchrony in response to environmental covariates
title_full_unstemmed Identifying multispecies synchrony in response to environmental covariates
title_short Identifying multispecies synchrony in response to environmental covariates
title_sort identifying multispecies synchrony in response to environmental covariates
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5167035/
https://www.ncbi.nlm.nih.gov/pubmed/28031803
http://dx.doi.org/10.1002/ece3.2518
work_keys_str_mv AT swallowben identifyingmultispeciessynchronyinresponsetoenvironmentalcovariates
AT kingruth identifyingmultispeciessynchronyinresponsetoenvironmentalcovariates
AT bucklandstephent identifyingmultispeciessynchronyinresponsetoenvironmentalcovariates
AT tomsmikep identifyingmultispeciessynchronyinresponsetoenvironmentalcovariates