Cargando…

The diverse and expanding role of mass spectrometry in structural and molecular biology

The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS‐based high‐throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state‐of‐...

Descripción completa

Detalles Bibliográficos
Autores principales: Lössl, Philip, van de Waterbeemd, Michiel, Heck, Albert JR
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5167345/
https://www.ncbi.nlm.nih.gov/pubmed/27797822
http://dx.doi.org/10.15252/embj.201694818
Descripción
Sumario:The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS‐based high‐throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state‐of‐the‐art MS methods, including native MS, top‐down protein sequencing, cross‐linking‐MS, and hydrogen–deuterium exchange‐MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR–Cas systems and eukaryotic transcription complexes.