Cargando…
Limb patterning genes and heterochronic development of the emu wing bud
BACKGROUND: The forelimb of the flightless emu is a vestigial structure, with greatly reduced wing elements and digit loss. To explore the molecular and cellular mechanisms associated with the evolution of vestigial wings and loss of flight in the emu, key limb patterning genes were examined in deve...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5168868/ https://www.ncbi.nlm.nih.gov/pubmed/28031782 http://dx.doi.org/10.1186/s13227-016-0063-5 |
_version_ | 1782483429266292736 |
---|---|
author | Smith, Craig A. Farlie, Peter G. Davidson, Nadia M. Roeszler, Kelly N. Hirst, Claire Oshlack, Alicia Lambert, David M. |
author_facet | Smith, Craig A. Farlie, Peter G. Davidson, Nadia M. Roeszler, Kelly N. Hirst, Claire Oshlack, Alicia Lambert, David M. |
author_sort | Smith, Craig A. |
collection | PubMed |
description | BACKGROUND: The forelimb of the flightless emu is a vestigial structure, with greatly reduced wing elements and digit loss. To explore the molecular and cellular mechanisms associated with the evolution of vestigial wings and loss of flight in the emu, key limb patterning genes were examined in developing embryos. METHODS: Limb development was compared in emu versus chicken embryos. Immunostaining for cell proliferation markers was used to analyze growth of the emu forelimb and hindlimb buds. Expression patterns of limb patterning genes were studied, using whole-mount in situ hybridization (for mRNA localization) and RNA-seq (for mRNA expression levels). RESULTS: The forelimb of the emu embryo showed heterochronic development compared to that in the chicken, with the forelimb bud being retarded in its development. Early outgrowth of the emu forelimb bud is characterized by a lower level of cell proliferation compared the hindlimb bud, as assessed by PH3 immunostaining. In contrast, there were no obvious differences in apoptosis in forelimb versus hindlimb buds (cleaved caspase 3 staining). Most key patterning genes were expressed in emu forelimb buds similarly to that observed in the chicken, but with smaller expression domains. However, expression of Sonic Hedgehog (Shh) mRNA, which is central to anterior–posterior axis development, was delayed in the emu forelimb bud relative to other patterning genes. Regulators of Shh expression, Gli3 and HoxD13, also showed altered expression levels in the emu forelimb bud. CONCLUSIONS: These data reveal heterochronic but otherwise normal expression of most patterning genes in the emu vestigial forelimb. Delayed Shh expression may be related to the small and vestigial structure of the emu forelimb bud. However, the genetic mechanism driving retarded emu wing development is likely to rest within the forelimb field of the lateral plate mesoderm, predating the expression of patterning genes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13227-016-0063-5) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5168868 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-51688682016-12-28 Limb patterning genes and heterochronic development of the emu wing bud Smith, Craig A. Farlie, Peter G. Davidson, Nadia M. Roeszler, Kelly N. Hirst, Claire Oshlack, Alicia Lambert, David M. EvoDevo Research BACKGROUND: The forelimb of the flightless emu is a vestigial structure, with greatly reduced wing elements and digit loss. To explore the molecular and cellular mechanisms associated with the evolution of vestigial wings and loss of flight in the emu, key limb patterning genes were examined in developing embryos. METHODS: Limb development was compared in emu versus chicken embryos. Immunostaining for cell proliferation markers was used to analyze growth of the emu forelimb and hindlimb buds. Expression patterns of limb patterning genes were studied, using whole-mount in situ hybridization (for mRNA localization) and RNA-seq (for mRNA expression levels). RESULTS: The forelimb of the emu embryo showed heterochronic development compared to that in the chicken, with the forelimb bud being retarded in its development. Early outgrowth of the emu forelimb bud is characterized by a lower level of cell proliferation compared the hindlimb bud, as assessed by PH3 immunostaining. In contrast, there were no obvious differences in apoptosis in forelimb versus hindlimb buds (cleaved caspase 3 staining). Most key patterning genes were expressed in emu forelimb buds similarly to that observed in the chicken, but with smaller expression domains. However, expression of Sonic Hedgehog (Shh) mRNA, which is central to anterior–posterior axis development, was delayed in the emu forelimb bud relative to other patterning genes. Regulators of Shh expression, Gli3 and HoxD13, also showed altered expression levels in the emu forelimb bud. CONCLUSIONS: These data reveal heterochronic but otherwise normal expression of most patterning genes in the emu vestigial forelimb. Delayed Shh expression may be related to the small and vestigial structure of the emu forelimb bud. However, the genetic mechanism driving retarded emu wing development is likely to rest within the forelimb field of the lateral plate mesoderm, predating the expression of patterning genes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13227-016-0063-5) contains supplementary material, which is available to authorized users. BioMed Central 2016-12-20 /pmc/articles/PMC5168868/ /pubmed/28031782 http://dx.doi.org/10.1186/s13227-016-0063-5 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Smith, Craig A. Farlie, Peter G. Davidson, Nadia M. Roeszler, Kelly N. Hirst, Claire Oshlack, Alicia Lambert, David M. Limb patterning genes and heterochronic development of the emu wing bud |
title | Limb patterning genes and heterochronic development of the emu wing bud |
title_full | Limb patterning genes and heterochronic development of the emu wing bud |
title_fullStr | Limb patterning genes and heterochronic development of the emu wing bud |
title_full_unstemmed | Limb patterning genes and heterochronic development of the emu wing bud |
title_short | Limb patterning genes and heterochronic development of the emu wing bud |
title_sort | limb patterning genes and heterochronic development of the emu wing bud |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5168868/ https://www.ncbi.nlm.nih.gov/pubmed/28031782 http://dx.doi.org/10.1186/s13227-016-0063-5 |
work_keys_str_mv | AT smithcraiga limbpatterninggenesandheterochronicdevelopmentoftheemuwingbud AT farliepeterg limbpatterninggenesandheterochronicdevelopmentoftheemuwingbud AT davidsonnadiam limbpatterninggenesandheterochronicdevelopmentoftheemuwingbud AT roeszlerkellyn limbpatterninggenesandheterochronicdevelopmentoftheemuwingbud AT hirstclaire limbpatterninggenesandheterochronicdevelopmentoftheemuwingbud AT oshlackalicia limbpatterninggenesandheterochronicdevelopmentoftheemuwingbud AT lambertdavidm limbpatterninggenesandheterochronicdevelopmentoftheemuwingbud |