Cargando…

Cognitive control activity is modulated by the magnitude of interference and pre-activation of monitoring mechanisms

The Simon task is used to study interference from irrelevant spatial information. Interference is manifested by longer reaction times when the required response –based on non-spatial features- is spatially incompatible with stimulus position. Interference is greater when incompatible trials are prec...

Descripción completa

Detalles Bibliográficos
Autores principales: Cespón, Jesús, Galdo-Álvarez, Santiago, Díaz, Fernando
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171494/
https://www.ncbi.nlm.nih.gov/pubmed/27995983
http://dx.doi.org/10.1038/srep39595
Descripción
Sumario:The Simon task is used to study interference from irrelevant spatial information. Interference is manifested by longer reaction times when the required response –based on non-spatial features- is spatially incompatible with stimulus position. Interference is greater when incompatible trials are preceded by compatible trials (compatible-incompatible sequence) than when they are preceded by incompatible trials (incompatible-incompatible sequence). However, the relationships between spatial attention, interference and cognitive control have not been investigated. In the present study, we distinguished three experimental conditions according to sequential effects: same mappings (SM, compatible-compatible/incompatible-incompatible sequences: low interference), opposite mappings (OM, compatible-incompatible/incompatible-compatible sequences: high interference) and unrelated mappings (UM, central-compatible/central-incompatible sequences: intermediate interference). The negativity central contralateral (N2cc, a correlate of prevention of spatial response tendencies) was larger in OM than in SM, indicating greater cognitive control for greater interference. Furthermore, N2cc was larger in UM than in SM/OM, indicating lower neural efficiency for suppressing spatial tendencies of the response after central trials. Attentional processes (negativity posterior contralateral) were also delayed in UM relative to SM/OM, suggesting attentional facilitation by similar sets of attentional shifts in successive trials. Overall, the present findings showed that cognitive control is modulated by the magnitude of interference and pre-activation of monitoring mechanisms.