Cargando…

Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones

Subduction zones modulate the chemical evolution of the Earth's mantle. Water and volatile elements in the slab are released as fluids into the mantle wedge and this process is widely considered to result in the oxidation of the sub-arc mantle. However, the chemical composition and speciation o...

Descripción completa

Detalles Bibliográficos
Autores principales: Pons, Marie-Laure, Debret, Baptiste, Bouilhol, Pierre, Delacour, Adélie, Williams, Helen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171646/
https://www.ncbi.nlm.nih.gov/pubmed/27982033
http://dx.doi.org/10.1038/ncomms13794
Descripción
Sumario:Subduction zones modulate the chemical evolution of the Earth's mantle. Water and volatile elements in the slab are released as fluids into the mantle wedge and this process is widely considered to result in the oxidation of the sub-arc mantle. However, the chemical composition and speciation of these fluids, which is critical for the mobility of economically important elements, remain poorly constrained. Sulfur has the potential to act both as oxidizing agent and transport medium. Here we use zinc stable isotopes (δ(66)Zn) in subducted Alpine serpentinites to decipher the chemical properties of slab-derived fluids. We show that the progressive decrease in δ(66)Zn with metamorphic grade is correlated with a decrease in sulfur content. As existing theoretical work predicts that Zn-SO(4)(2−) complexes preferentially incorporate heavy δ(66)Zn, our results provide strong evidence for the release of oxidized, sulfate-rich, slab serpentinite-derived fluids to the mantle wedge.