Cargando…
SLINGER: large-scale learning for predicting gene expression
Recent studies have established that single nucleotide polymorphisms are sufficient to build accurate predictive models of gene expression. Gamazon, et al., found that gene expression values predicted from cis neighborhood SNPs show statistical association with disease status. In this work, we remov...
Autores principales: | Vervier, Kévin, Michaelson, Jacob J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171717/ https://www.ncbi.nlm.nih.gov/pubmed/27996030 http://dx.doi.org/10.1038/srep39360 |
Ejemplares similares
-
TiSAn: estimating tissue-specific effects of coding and non-coding variants
por: Vervier, Kévin, et al.
Publicado: (2018) -
Large-scale machine learning for metagenomics sequence classification
por: Vervier, Kévin, et al.
Publicado: (2016) -
Bioaccumulation, Bioindication and Health Risk Assessment of Heavy Metals in Cape Horse Mackerel (Trachurus trachurus) and Slinger Seabream (Chrysoblephus puniceus) in the Durban Basin and Cape Vidal, South Africa
por: Debipersadh, Sanjeev, et al.
Publicado: (2023) -
Whole-genome sequencing in a family with twin boys with autism and intellectual disability suggests multimodal polygenic risk
por: McKenna, Brooke, et al.
Publicado: (2018) -
Forecasting risk gene discovery in autism with machine learning and genome-scale data
por: Brueggeman, Leo, et al.
Publicado: (2020)