Cargando…

Global repositioning of transcription start sites in a plant-fermenting bacterium

Bacteria respond to their environment by regulating mRNA synthesis, often by altering the genomic sites at which RNA polymerase initiates transcription. Here, we investigate genome-wide changes in transcription start site (TSS) usage by Clostridium phytofermentans, a model bacterium for fermentation...

Descripción completa

Detalles Bibliográficos
Autores principales: Boutard, Magali, Ettwiller, Laurence, Cerisy, Tristan, Alberti, Adriana, Labadie, Karine, Salanoubat, Marcel, Schildkraut, Ira, Tolonen, Andrew C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171806/
https://www.ncbi.nlm.nih.gov/pubmed/27982035
http://dx.doi.org/10.1038/ncomms13783
Descripción
Sumario:Bacteria respond to their environment by regulating mRNA synthesis, often by altering the genomic sites at which RNA polymerase initiates transcription. Here, we investigate genome-wide changes in transcription start site (TSS) usage by Clostridium phytofermentans, a model bacterium for fermentation of lignocellulosic biomass. We quantify expression of nearly 10,000 TSS at single base resolution by Capp-Switch sequencing, which combines capture of synthetically capped 5′ mRNA fragments with template-switching reverse transcription. We find the locations and expression levels of TSS for hundreds of genes change during metabolism of different plant substrates. We show that TSS reveals riboswitches, non-coding RNA and novel transcription units. We identify sequence motifs associated with carbon source-specific TSS and use them for regulon discovery, implicating a LacI/GalR protein in control of pectin metabolism. We discuss how the high resolution and specificity of Capp-Switch enables study of condition-specific changes in transcription initiation in bacteria.