Cargando…

Directional interlayer spin-valley transfer in two-dimensional heterostructures

Van der Waals heterostructures formed by two different monolayer semiconductors have emerged as a promising platform for new optoelectronic and spin/valleytronic applications. In addition to its atomically thin nature, a two-dimensional semiconductor heterostructure is distinct from its three-dimens...

Descripción completa

Detalles Bibliográficos
Autores principales: Schaibley, John R., Rivera, Pasqual, Yu, Hongyi, Seyler, Kyle L., Yan, Jiaqiang, Mandrus, David G., Taniguchi, Takashi, Watanabe, Kenji, Yao, Wang, Xu, Xiaodong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171822/
https://www.ncbi.nlm.nih.gov/pubmed/27966524
http://dx.doi.org/10.1038/ncomms13747
Descripción
Sumario:Van der Waals heterostructures formed by two different monolayer semiconductors have emerged as a promising platform for new optoelectronic and spin/valleytronic applications. In addition to its atomically thin nature, a two-dimensional semiconductor heterostructure is distinct from its three-dimensional counterparts due to the unique coupled spin-valley physics of its constituent monolayers. Here, we report the direct observation that an optically generated spin-valley polarization in one monolayer can be transferred between layers of a two-dimensional MoSe(2)–WSe(2) heterostructure. Using non-degenerate optical circular dichroism spectroscopy, we show that charge transfer between two monolayers conserves spin-valley polarization and is only weakly dependent on the twist angle between layers. Our work points to a new spin-valley pumping scheme in nanoscale devices, provides a fundamental understanding of spin-valley transfer across the two-dimensional interface, and shows the potential use of two-dimensional semiconductors as a spin-valley generator in two-dimensional spin/valleytronic devices for storing and processing information.