Cargando…
Tuning magnetic spirals beyond room temperature with chemical disorder
In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets featuring ordered spiral magnetic phases. Such materials are of high-current interest due to their potential for spintronics and low-power magnetoelectric d...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171853/ https://www.ncbi.nlm.nih.gov/pubmed/27982127 http://dx.doi.org/10.1038/ncomms13758 |
Sumario: | In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets featuring ordered spiral magnetic phases. Such materials are of high-current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low-magnetic ordering temperatures (typically <100 K) greatly restrict their fields of application. Here we demonstrate that the onset temperature of the spiral phase in the perovskite YBaCuFeO(5) can be increased by more than 150 K through a controlled manipulation of the Fe/Cu chemical disorder. Moreover, we show that this novel mechanism can stabilize the magnetic spiral state of YBaCuFeO(5) above the symbolic value of 25 °C at zero magnetic field. Our findings demonstrate that the properties of magnetic spirals, including its wavelength and stability range, can be engineered through the control of chemical disorder, offering a great potential for the design of materials with magnetoelectric properties beyond room temperature. |
---|