Cargando…

Intelligence and eeg measures of information flow: efficiency and homeostatic neuroplasticity

The purpose of this study was to explore the relationship between the magnitude of EEG information flow and intelligence. The electroencephalogram (EEG) was recorded from 19 scalp locations from 371 subjects ranging in age from 5 years to 17.6 years. The Wechler Intelligence Scale for Children (WISC...

Descripción completa

Detalles Bibliográficos
Autores principales: Thatcher, R. W., Palmero-Soler, E., North, D. M., Biver, C. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171906/
https://www.ncbi.nlm.nih.gov/pubmed/27996049
http://dx.doi.org/10.1038/srep38890
Descripción
Sumario:The purpose of this study was to explore the relationship between the magnitude of EEG information flow and intelligence. The electroencephalogram (EEG) was recorded from 19 scalp locations from 371 subjects ranging in age from 5 years to 17.6 years. The Wechler Intelligence Scale for Children (WISC-R) was administered for individuals between 5 years of age and 16 years and the Weschler Adult Intelligence Scale revised (WAIS-R) was administered to subjects older than 16 years to estimate I.Q. The phase slope index estimated the magnitude of information flow between all electrode combinations for difference frequency bands. Discriminant analyses were performed between high I.Q. (>120) and low I.Q. groups (<90). The magnitude of information flow was inversely related to I.Q. especially in the alpha and beta frequency bands. Long distance inter-electrode distances exhibited greater information flow than short inter-electrode distances. Frontal-parietal correlations were the most significant. It is concluded that higher I.Q. is related to increased efficiency of local information processing and reduced long distance compensatory dynamics that supports a small-world model of intelligence.