Cargando…

Evidence for spin-to-charge conversion by Rashba coupling in metallic states at the Fe/Ge(111) interface

The spin–orbit coupling relating the electron spin and momentum allows for spin generation, detection and manipulation. It thus fulfils the three basic functions of the spin field-effect transistor. However, the spin Hall effect in bulk germanium is too weak to produce spin currents, whereas large R...

Descripción completa

Detalles Bibliográficos
Autores principales: Oyarzún, S., Nandy, A. K., Rortais, F., Rojas-Sánchez, J.-C., Dau, M.-T., Noël, P., Laczkowski, P., Pouget, S., Okuno, H., Vila, L., Vergnaud, C., Beigné, C., Marty, A., Attané, J.-P., Gambarelli, S., George, J.-M., Jaffrès, H., Blügel, S., Jamet, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171917/
https://www.ncbi.nlm.nih.gov/pubmed/27976747
http://dx.doi.org/10.1038/ncomms13857
Descripción
Sumario:The spin–orbit coupling relating the electron spin and momentum allows for spin generation, detection and manipulation. It thus fulfils the three basic functions of the spin field-effect transistor. However, the spin Hall effect in bulk germanium is too weak to produce spin currents, whereas large Rashba effect at Ge(111) surfaces covered with heavy metals could generate spin-polarized currents. The Rashba spin splitting can actually be as large as hundreds of meV. Here we show a giant spin-to-charge conversion in metallic states at the Fe/Ge(111) interface due to the Rashba coupling. We generate very large charge currents by direct spin pumping into the interface states from 20 K to room temperature. The presence of these metallic states at the Fe/Ge(111) interface is demonstrated by first-principles electronic structure calculations. By this, we demonstrate how to take advantage of the spin–orbit coupling for the development of the spin field-effect transistor.