Cargando…

Evidence for spin-to-charge conversion by Rashba coupling in metallic states at the Fe/Ge(111) interface

The spin–orbit coupling relating the electron spin and momentum allows for spin generation, detection and manipulation. It thus fulfils the three basic functions of the spin field-effect transistor. However, the spin Hall effect in bulk germanium is too weak to produce spin currents, whereas large R...

Descripción completa

Detalles Bibliográficos
Autores principales: Oyarzún, S., Nandy, A. K., Rortais, F., Rojas-Sánchez, J.-C., Dau, M.-T., Noël, P., Laczkowski, P., Pouget, S., Okuno, H., Vila, L., Vergnaud, C., Beigné, C., Marty, A., Attané, J.-P., Gambarelli, S., George, J.-M., Jaffrès, H., Blügel, S., Jamet, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171917/
https://www.ncbi.nlm.nih.gov/pubmed/27976747
http://dx.doi.org/10.1038/ncomms13857
_version_ 1782484037613387776
author Oyarzún, S.
Nandy, A. K.
Rortais, F.
Rojas-Sánchez, J.-C.
Dau, M.-T.
Noël, P.
Laczkowski, P.
Pouget, S.
Okuno, H.
Vila, L.
Vergnaud, C.
Beigné, C.
Marty, A.
Attané, J.-P.
Gambarelli, S.
George, J.-M.
Jaffrès, H.
Blügel, S.
Jamet, M.
author_facet Oyarzún, S.
Nandy, A. K.
Rortais, F.
Rojas-Sánchez, J.-C.
Dau, M.-T.
Noël, P.
Laczkowski, P.
Pouget, S.
Okuno, H.
Vila, L.
Vergnaud, C.
Beigné, C.
Marty, A.
Attané, J.-P.
Gambarelli, S.
George, J.-M.
Jaffrès, H.
Blügel, S.
Jamet, M.
author_sort Oyarzún, S.
collection PubMed
description The spin–orbit coupling relating the electron spin and momentum allows for spin generation, detection and manipulation. It thus fulfils the three basic functions of the spin field-effect transistor. However, the spin Hall effect in bulk germanium is too weak to produce spin currents, whereas large Rashba effect at Ge(111) surfaces covered with heavy metals could generate spin-polarized currents. The Rashba spin splitting can actually be as large as hundreds of meV. Here we show a giant spin-to-charge conversion in metallic states at the Fe/Ge(111) interface due to the Rashba coupling. We generate very large charge currents by direct spin pumping into the interface states from 20 K to room temperature. The presence of these metallic states at the Fe/Ge(111) interface is demonstrated by first-principles electronic structure calculations. By this, we demonstrate how to take advantage of the spin–orbit coupling for the development of the spin field-effect transistor.
format Online
Article
Text
id pubmed-5171917
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-51719172016-12-23 Evidence for spin-to-charge conversion by Rashba coupling in metallic states at the Fe/Ge(111) interface Oyarzún, S. Nandy, A. K. Rortais, F. Rojas-Sánchez, J.-C. Dau, M.-T. Noël, P. Laczkowski, P. Pouget, S. Okuno, H. Vila, L. Vergnaud, C. Beigné, C. Marty, A. Attané, J.-P. Gambarelli, S. George, J.-M. Jaffrès, H. Blügel, S. Jamet, M. Nat Commun Article The spin–orbit coupling relating the electron spin and momentum allows for spin generation, detection and manipulation. It thus fulfils the three basic functions of the spin field-effect transistor. However, the spin Hall effect in bulk germanium is too weak to produce spin currents, whereas large Rashba effect at Ge(111) surfaces covered with heavy metals could generate spin-polarized currents. The Rashba spin splitting can actually be as large as hundreds of meV. Here we show a giant spin-to-charge conversion in metallic states at the Fe/Ge(111) interface due to the Rashba coupling. We generate very large charge currents by direct spin pumping into the interface states from 20 K to room temperature. The presence of these metallic states at the Fe/Ge(111) interface is demonstrated by first-principles electronic structure calculations. By this, we demonstrate how to take advantage of the spin–orbit coupling for the development of the spin field-effect transistor. Nature Publishing Group 2016-12-15 /pmc/articles/PMC5171917/ /pubmed/27976747 http://dx.doi.org/10.1038/ncomms13857 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Oyarzún, S.
Nandy, A. K.
Rortais, F.
Rojas-Sánchez, J.-C.
Dau, M.-T.
Noël, P.
Laczkowski, P.
Pouget, S.
Okuno, H.
Vila, L.
Vergnaud, C.
Beigné, C.
Marty, A.
Attané, J.-P.
Gambarelli, S.
George, J.-M.
Jaffrès, H.
Blügel, S.
Jamet, M.
Evidence for spin-to-charge conversion by Rashba coupling in metallic states at the Fe/Ge(111) interface
title Evidence for spin-to-charge conversion by Rashba coupling in metallic states at the Fe/Ge(111) interface
title_full Evidence for spin-to-charge conversion by Rashba coupling in metallic states at the Fe/Ge(111) interface
title_fullStr Evidence for spin-to-charge conversion by Rashba coupling in metallic states at the Fe/Ge(111) interface
title_full_unstemmed Evidence for spin-to-charge conversion by Rashba coupling in metallic states at the Fe/Ge(111) interface
title_short Evidence for spin-to-charge conversion by Rashba coupling in metallic states at the Fe/Ge(111) interface
title_sort evidence for spin-to-charge conversion by rashba coupling in metallic states at the fe/ge(111) interface
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171917/
https://www.ncbi.nlm.nih.gov/pubmed/27976747
http://dx.doi.org/10.1038/ncomms13857
work_keys_str_mv AT oyarzuns evidenceforspintochargeconversionbyrashbacouplinginmetallicstatesatthefege111interface
AT nandyak evidenceforspintochargeconversionbyrashbacouplinginmetallicstatesatthefege111interface
AT rortaisf evidenceforspintochargeconversionbyrashbacouplinginmetallicstatesatthefege111interface
AT rojassanchezjc evidenceforspintochargeconversionbyrashbacouplinginmetallicstatesatthefege111interface
AT daumt evidenceforspintochargeconversionbyrashbacouplinginmetallicstatesatthefege111interface
AT noelp evidenceforspintochargeconversionbyrashbacouplinginmetallicstatesatthefege111interface
AT laczkowskip evidenceforspintochargeconversionbyrashbacouplinginmetallicstatesatthefege111interface
AT pougets evidenceforspintochargeconversionbyrashbacouplinginmetallicstatesatthefege111interface
AT okunoh evidenceforspintochargeconversionbyrashbacouplinginmetallicstatesatthefege111interface
AT vilal evidenceforspintochargeconversionbyrashbacouplinginmetallicstatesatthefege111interface
AT vergnaudc evidenceforspintochargeconversionbyrashbacouplinginmetallicstatesatthefege111interface
AT beignec evidenceforspintochargeconversionbyrashbacouplinginmetallicstatesatthefege111interface
AT martya evidenceforspintochargeconversionbyrashbacouplinginmetallicstatesatthefege111interface
AT attanejp evidenceforspintochargeconversionbyrashbacouplinginmetallicstatesatthefege111interface
AT gambarellis evidenceforspintochargeconversionbyrashbacouplinginmetallicstatesatthefege111interface
AT georgejm evidenceforspintochargeconversionbyrashbacouplinginmetallicstatesatthefege111interface
AT jaffresh evidenceforspintochargeconversionbyrashbacouplinginmetallicstatesatthefege111interface
AT blugels evidenceforspintochargeconversionbyrashbacouplinginmetallicstatesatthefege111interface
AT jametm evidenceforspintochargeconversionbyrashbacouplinginmetallicstatesatthefege111interface