Cargando…
The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics
Quantum biology is the study of quantum effects on biochemical mechanisms and biological function. We show that the biological production of reactive oxygen species (ROS) in live cells can be influenced by coherent electron spin dynamics, providing a new example of quantum biology in cellular regula...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5172244/ https://www.ncbi.nlm.nih.gov/pubmed/27995996 http://dx.doi.org/10.1038/srep38543 |
_version_ | 1782484097964179456 |
---|---|
author | Usselman, Robert J. Chavarriaga, Cristina Castello, Pablo R. Procopio, Maria Ritz, Thorsten Dratz, Edward A. Singel, David J. Martino, Carlos F. |
author_facet | Usselman, Robert J. Chavarriaga, Cristina Castello, Pablo R. Procopio, Maria Ritz, Thorsten Dratz, Edward A. Singel, David J. Martino, Carlos F. |
author_sort | Usselman, Robert J. |
collection | PubMed |
description | Quantum biology is the study of quantum effects on biochemical mechanisms and biological function. We show that the biological production of reactive oxygen species (ROS) in live cells can be influenced by coherent electron spin dynamics, providing a new example of quantum biology in cellular regulation. ROS partitioning appears to be mediated during the activation of molecular oxygen (O(2)) by reduced flavoenzymes, forming spin-correlated radical pairs (RPs). We find that oscillating magnetic fields at Zeeman resonance alter relative yields of cellular superoxide (O(2)(•−)) and hydrogen peroxide (H(2)O(2)) ROS products, indicating coherent singlet-triplet mixing at the point of ROS formation. Furthermore, the orientation-dependence of magnetic stimulation, which leads to specific changes in ROS levels, increases either mitochondrial respiration and glycolysis rates. Our results reveal quantum effects in live cell cultures that bridge atomic and cellular levels by connecting ROS partitioning to cellular bioenergetics. |
format | Online Article Text |
id | pubmed-5172244 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-51722442016-12-28 The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics Usselman, Robert J. Chavarriaga, Cristina Castello, Pablo R. Procopio, Maria Ritz, Thorsten Dratz, Edward A. Singel, David J. Martino, Carlos F. Sci Rep Article Quantum biology is the study of quantum effects on biochemical mechanisms and biological function. We show that the biological production of reactive oxygen species (ROS) in live cells can be influenced by coherent electron spin dynamics, providing a new example of quantum biology in cellular regulation. ROS partitioning appears to be mediated during the activation of molecular oxygen (O(2)) by reduced flavoenzymes, forming spin-correlated radical pairs (RPs). We find that oscillating magnetic fields at Zeeman resonance alter relative yields of cellular superoxide (O(2)(•−)) and hydrogen peroxide (H(2)O(2)) ROS products, indicating coherent singlet-triplet mixing at the point of ROS formation. Furthermore, the orientation-dependence of magnetic stimulation, which leads to specific changes in ROS levels, increases either mitochondrial respiration and glycolysis rates. Our results reveal quantum effects in live cell cultures that bridge atomic and cellular levels by connecting ROS partitioning to cellular bioenergetics. Nature Publishing Group 2016-12-20 /pmc/articles/PMC5172244/ /pubmed/27995996 http://dx.doi.org/10.1038/srep38543 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Usselman, Robert J. Chavarriaga, Cristina Castello, Pablo R. Procopio, Maria Ritz, Thorsten Dratz, Edward A. Singel, David J. Martino, Carlos F. The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics |
title | The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics |
title_full | The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics |
title_fullStr | The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics |
title_full_unstemmed | The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics |
title_short | The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics |
title_sort | quantum biology of reactive oxygen species partitioning impacts cellular bioenergetics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5172244/ https://www.ncbi.nlm.nih.gov/pubmed/27995996 http://dx.doi.org/10.1038/srep38543 |
work_keys_str_mv | AT usselmanrobertj thequantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics AT chavarriagacristina thequantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics AT castellopablor thequantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics AT procopiomaria thequantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics AT ritzthorsten thequantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics AT dratzedwarda thequantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics AT singeldavidj thequantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics AT martinocarlosf thequantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics AT usselmanrobertj quantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics AT chavarriagacristina quantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics AT castellopablor quantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics AT procopiomaria quantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics AT ritzthorsten quantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics AT dratzedwarda quantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics AT singeldavidj quantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics AT martinocarlosf quantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics |