Cargando…

The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics

Quantum biology is the study of quantum effects on biochemical mechanisms and biological function. We show that the biological production of reactive oxygen species (ROS) in live cells can be influenced by coherent electron spin dynamics, providing a new example of quantum biology in cellular regula...

Descripción completa

Detalles Bibliográficos
Autores principales: Usselman, Robert J., Chavarriaga, Cristina, Castello, Pablo R., Procopio, Maria, Ritz, Thorsten, Dratz, Edward A., Singel, David J., Martino, Carlos F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5172244/
https://www.ncbi.nlm.nih.gov/pubmed/27995996
http://dx.doi.org/10.1038/srep38543
_version_ 1782484097964179456
author Usselman, Robert J.
Chavarriaga, Cristina
Castello, Pablo R.
Procopio, Maria
Ritz, Thorsten
Dratz, Edward A.
Singel, David J.
Martino, Carlos F.
author_facet Usselman, Robert J.
Chavarriaga, Cristina
Castello, Pablo R.
Procopio, Maria
Ritz, Thorsten
Dratz, Edward A.
Singel, David J.
Martino, Carlos F.
author_sort Usselman, Robert J.
collection PubMed
description Quantum biology is the study of quantum effects on biochemical mechanisms and biological function. We show that the biological production of reactive oxygen species (ROS) in live cells can be influenced by coherent electron spin dynamics, providing a new example of quantum biology in cellular regulation. ROS partitioning appears to be mediated during the activation of molecular oxygen (O(2)) by reduced flavoenzymes, forming spin-correlated radical pairs (RPs). We find that oscillating magnetic fields at Zeeman resonance alter relative yields of cellular superoxide (O(2)(•−)) and hydrogen peroxide (H(2)O(2)) ROS products, indicating coherent singlet-triplet mixing at the point of ROS formation. Furthermore, the orientation-dependence of magnetic stimulation, which leads to specific changes in ROS levels, increases either mitochondrial respiration and glycolysis rates. Our results reveal quantum effects in live cell cultures that bridge atomic and cellular levels by connecting ROS partitioning to cellular bioenergetics.
format Online
Article
Text
id pubmed-5172244
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-51722442016-12-28 The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics Usselman, Robert J. Chavarriaga, Cristina Castello, Pablo R. Procopio, Maria Ritz, Thorsten Dratz, Edward A. Singel, David J. Martino, Carlos F. Sci Rep Article Quantum biology is the study of quantum effects on biochemical mechanisms and biological function. We show that the biological production of reactive oxygen species (ROS) in live cells can be influenced by coherent electron spin dynamics, providing a new example of quantum biology in cellular regulation. ROS partitioning appears to be mediated during the activation of molecular oxygen (O(2)) by reduced flavoenzymes, forming spin-correlated radical pairs (RPs). We find that oscillating magnetic fields at Zeeman resonance alter relative yields of cellular superoxide (O(2)(•−)) and hydrogen peroxide (H(2)O(2)) ROS products, indicating coherent singlet-triplet mixing at the point of ROS formation. Furthermore, the orientation-dependence of magnetic stimulation, which leads to specific changes in ROS levels, increases either mitochondrial respiration and glycolysis rates. Our results reveal quantum effects in live cell cultures that bridge atomic and cellular levels by connecting ROS partitioning to cellular bioenergetics. Nature Publishing Group 2016-12-20 /pmc/articles/PMC5172244/ /pubmed/27995996 http://dx.doi.org/10.1038/srep38543 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Usselman, Robert J.
Chavarriaga, Cristina
Castello, Pablo R.
Procopio, Maria
Ritz, Thorsten
Dratz, Edward A.
Singel, David J.
Martino, Carlos F.
The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics
title The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics
title_full The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics
title_fullStr The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics
title_full_unstemmed The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics
title_short The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics
title_sort quantum biology of reactive oxygen species partitioning impacts cellular bioenergetics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5172244/
https://www.ncbi.nlm.nih.gov/pubmed/27995996
http://dx.doi.org/10.1038/srep38543
work_keys_str_mv AT usselmanrobertj thequantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics
AT chavarriagacristina thequantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics
AT castellopablor thequantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics
AT procopiomaria thequantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics
AT ritzthorsten thequantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics
AT dratzedwarda thequantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics
AT singeldavidj thequantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics
AT martinocarlosf thequantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics
AT usselmanrobertj quantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics
AT chavarriagacristina quantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics
AT castellopablor quantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics
AT procopiomaria quantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics
AT ritzthorsten quantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics
AT dratzedwarda quantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics
AT singeldavidj quantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics
AT martinocarlosf quantumbiologyofreactiveoxygenspeciespartitioningimpactscellularbioenergetics