Cargando…
Genetic Algorithms Applied to Multi-Class Clustering for Gene Expression Data
A hybrid GA (genetic algorithm)-based clustering (HGACLUS) schema, combining merits of the Simulated Annealing, was described for finding an optimal or near-optimal set of medoids. This schema maximized the clustering success by achieving internal cluster cohesion and external cluster isolation. The...
Autores principales: | Pan, Haiyan, Zhu, Jun, Han, Danfu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5172428/ https://www.ncbi.nlm.nih.gov/pubmed/15629056 http://dx.doi.org/10.1016/S1672-0229(03)01033-7 |
Ejemplares similares
-
GenClust: A genetic algorithm for clustering gene expression data
por: Di Gesú, Vito, et al.
Publicado: (2005) -
Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes
por: Datta, Susmita, et al.
Publicado: (2006) -
Evaluation of clustering algorithms for gene expression data
por: Datta, Susmita, et al.
Publicado: (2006) -
Clustering Algorithms: Their Application to Gene Expression Data
por: Oyelade, Jelili, et al.
Publicado: (2016) -
Classification and feature selection algorithms for multi-class CGH data
por: Liu, Jun, et al.
Publicado: (2008)