Cargando…
A Hybrid SOM-SVM Approach for the Zebrafish Gene Expression Analysis
Microarray technology can be employed to quantitatively measure the expression of thousands of genes in a single experiment. It has become one of the main tools for global gene expression analysis in molecular biology research in recent years. The large amount of expression data generated by this te...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5172540/ https://www.ncbi.nlm.nih.gov/pubmed/16393145 http://dx.doi.org/10.1016/S1672-0229(05)03013-5 |
_version_ | 1782484145109204992 |
---|---|
author | Wu, Wei Liu, Xin Xu, Min Peng, Jin-Rong Setiono, Rudy |
author_facet | Wu, Wei Liu, Xin Xu, Min Peng, Jin-Rong Setiono, Rudy |
author_sort | Wu, Wei |
collection | PubMed |
description | Microarray technology can be employed to quantitatively measure the expression of thousands of genes in a single experiment. It has become one of the main tools for global gene expression analysis in molecular biology research in recent years. The large amount of expression data generated by this technology makes the study of certain complex biological problems possible, and machine learning methods are expected to play a crucial role in the analysis process. In this paper, we present our results from integrating the self-organizing map (SOM) and the support vector machine (SVM) for the analysis of the various functions of zebrafish genes based on their expression. The most distinctive characteristic of our zebrafish gene expression is that the number of samples of different classes is imbalanced. We discuss how SOM can be used as a data-filtering tool to improve the classification performance of the SVM on this data set. |
format | Online Article Text |
id | pubmed-5172540 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-51725402016-12-23 A Hybrid SOM-SVM Approach for the Zebrafish Gene Expression Analysis Wu, Wei Liu, Xin Xu, Min Peng, Jin-Rong Setiono, Rudy Genomics Proteomics Bioinformatics Article Microarray technology can be employed to quantitatively measure the expression of thousands of genes in a single experiment. It has become one of the main tools for global gene expression analysis in molecular biology research in recent years. The large amount of expression data generated by this technology makes the study of certain complex biological problems possible, and machine learning methods are expected to play a crucial role in the analysis process. In this paper, we present our results from integrating the self-organizing map (SOM) and the support vector machine (SVM) for the analysis of the various functions of zebrafish genes based on their expression. The most distinctive characteristic of our zebrafish gene expression is that the number of samples of different classes is imbalanced. We discuss how SOM can be used as a data-filtering tool to improve the classification performance of the SVM on this data set. Elsevier 2005 2016-11-28 /pmc/articles/PMC5172540/ /pubmed/16393145 http://dx.doi.org/10.1016/S1672-0229(05)03013-5 Text en . http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Wu, Wei Liu, Xin Xu, Min Peng, Jin-Rong Setiono, Rudy A Hybrid SOM-SVM Approach for the Zebrafish Gene Expression Analysis |
title | A Hybrid SOM-SVM Approach for the Zebrafish Gene Expression Analysis |
title_full | A Hybrid SOM-SVM Approach for the Zebrafish Gene Expression Analysis |
title_fullStr | A Hybrid SOM-SVM Approach for the Zebrafish Gene Expression Analysis |
title_full_unstemmed | A Hybrid SOM-SVM Approach for the Zebrafish Gene Expression Analysis |
title_short | A Hybrid SOM-SVM Approach for the Zebrafish Gene Expression Analysis |
title_sort | hybrid som-svm approach for the zebrafish gene expression analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5172540/ https://www.ncbi.nlm.nih.gov/pubmed/16393145 http://dx.doi.org/10.1016/S1672-0229(05)03013-5 |
work_keys_str_mv | AT wuwei ahybridsomsvmapproachforthezebrafishgeneexpressionanalysis AT liuxin ahybridsomsvmapproachforthezebrafishgeneexpressionanalysis AT xumin ahybridsomsvmapproachforthezebrafishgeneexpressionanalysis AT pengjinrong ahybridsomsvmapproachforthezebrafishgeneexpressionanalysis AT setionorudy ahybridsomsvmapproachforthezebrafishgeneexpressionanalysis AT wuwei hybridsomsvmapproachforthezebrafishgeneexpressionanalysis AT liuxin hybridsomsvmapproachforthezebrafishgeneexpressionanalysis AT xumin hybridsomsvmapproachforthezebrafishgeneexpressionanalysis AT pengjinrong hybridsomsvmapproachforthezebrafishgeneexpressionanalysis AT setionorudy hybridsomsvmapproachforthezebrafishgeneexpressionanalysis |