Cargando…
In Vivo, Non-Invasive Characterization of Human Bone by Hybrid Broadband (600-1200 nm) Diffuse Optical and Correlation Spectroscopies
Non-invasive in vivo diffuse optical characterization of human bone opens a new possibility of diagnosing bone related pathologies. We present an in vivo characterization performed on seventeen healthy subjects at six different superficial bone locations: radius distal, radius proximal, ulna distal,...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5172608/ https://www.ncbi.nlm.nih.gov/pubmed/27997565 http://dx.doi.org/10.1371/journal.pone.0168426 |
_version_ | 1782484156670803968 |
---|---|
author | Konugolu Venkata Sekar, Sanathana Pagliazzi, Marco Negredo, Eugènia Martelli, Fabrizio Farina, Andrea Dalla Mora, Alberto Lindner, Claus Farzam, Parisa Pérez-Álvarez, Núria Puig, Jordi Taroni, Paola Pifferi, Antonio Durduran, Turgut |
author_facet | Konugolu Venkata Sekar, Sanathana Pagliazzi, Marco Negredo, Eugènia Martelli, Fabrizio Farina, Andrea Dalla Mora, Alberto Lindner, Claus Farzam, Parisa Pérez-Álvarez, Núria Puig, Jordi Taroni, Paola Pifferi, Antonio Durduran, Turgut |
author_sort | Konugolu Venkata Sekar, Sanathana |
collection | PubMed |
description | Non-invasive in vivo diffuse optical characterization of human bone opens a new possibility of diagnosing bone related pathologies. We present an in vivo characterization performed on seventeen healthy subjects at six different superficial bone locations: radius distal, radius proximal, ulna distal, ulna proximal, trochanter and calcaneus. A tailored diffuse optical protocol for high penetration depth combined with the rather superficial nature of considered tissues ensured the effective probing of the bone tissue. Measurements were performed using a broadband system for Time-Resolved Diffuse Optical Spectroscopy (TRS) to assess mean absorption and reduced scattering spectra in the 600–1200 nm range and Diffuse Correlation Spectroscopy (DCS) to monitor microvascular blood flow. Significant variations among tissue constituents were found between different locations; with radius distal rich of collagen, suggesting it as a prominent location for bone related measurements, and calcaneus bone having highest blood flow among the body locations being considered. By using TRS and DCS together, we are able to probe the perfusion and oxygen consumption of the tissue without any contrast agents. Therefore, we predict that these methods will be able to evaluate the impairment of the oxygen metabolism of the bone at the point-of-care. |
format | Online Article Text |
id | pubmed-5172608 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-51726082017-01-04 In Vivo, Non-Invasive Characterization of Human Bone by Hybrid Broadband (600-1200 nm) Diffuse Optical and Correlation Spectroscopies Konugolu Venkata Sekar, Sanathana Pagliazzi, Marco Negredo, Eugènia Martelli, Fabrizio Farina, Andrea Dalla Mora, Alberto Lindner, Claus Farzam, Parisa Pérez-Álvarez, Núria Puig, Jordi Taroni, Paola Pifferi, Antonio Durduran, Turgut PLoS One Research Article Non-invasive in vivo diffuse optical characterization of human bone opens a new possibility of diagnosing bone related pathologies. We present an in vivo characterization performed on seventeen healthy subjects at six different superficial bone locations: radius distal, radius proximal, ulna distal, ulna proximal, trochanter and calcaneus. A tailored diffuse optical protocol for high penetration depth combined with the rather superficial nature of considered tissues ensured the effective probing of the bone tissue. Measurements were performed using a broadband system for Time-Resolved Diffuse Optical Spectroscopy (TRS) to assess mean absorption and reduced scattering spectra in the 600–1200 nm range and Diffuse Correlation Spectroscopy (DCS) to monitor microvascular blood flow. Significant variations among tissue constituents were found between different locations; with radius distal rich of collagen, suggesting it as a prominent location for bone related measurements, and calcaneus bone having highest blood flow among the body locations being considered. By using TRS and DCS together, we are able to probe the perfusion and oxygen consumption of the tissue without any contrast agents. Therefore, we predict that these methods will be able to evaluate the impairment of the oxygen metabolism of the bone at the point-of-care. Public Library of Science 2016-12-20 /pmc/articles/PMC5172608/ /pubmed/27997565 http://dx.doi.org/10.1371/journal.pone.0168426 Text en © 2016 Konugolu Venkata Sekar et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Konugolu Venkata Sekar, Sanathana Pagliazzi, Marco Negredo, Eugènia Martelli, Fabrizio Farina, Andrea Dalla Mora, Alberto Lindner, Claus Farzam, Parisa Pérez-Álvarez, Núria Puig, Jordi Taroni, Paola Pifferi, Antonio Durduran, Turgut In Vivo, Non-Invasive Characterization of Human Bone by Hybrid Broadband (600-1200 nm) Diffuse Optical and Correlation Spectroscopies |
title | In Vivo, Non-Invasive Characterization of Human Bone by Hybrid Broadband (600-1200 nm) Diffuse Optical and Correlation Spectroscopies |
title_full | In Vivo, Non-Invasive Characterization of Human Bone by Hybrid Broadband (600-1200 nm) Diffuse Optical and Correlation Spectroscopies |
title_fullStr | In Vivo, Non-Invasive Characterization of Human Bone by Hybrid Broadband (600-1200 nm) Diffuse Optical and Correlation Spectroscopies |
title_full_unstemmed | In Vivo, Non-Invasive Characterization of Human Bone by Hybrid Broadband (600-1200 nm) Diffuse Optical and Correlation Spectroscopies |
title_short | In Vivo, Non-Invasive Characterization of Human Bone by Hybrid Broadband (600-1200 nm) Diffuse Optical and Correlation Spectroscopies |
title_sort | in vivo, non-invasive characterization of human bone by hybrid broadband (600-1200 nm) diffuse optical and correlation spectroscopies |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5172608/ https://www.ncbi.nlm.nih.gov/pubmed/27997565 http://dx.doi.org/10.1371/journal.pone.0168426 |
work_keys_str_mv | AT konugoluvenkatasekarsanathana invivononinvasivecharacterizationofhumanbonebyhybridbroadband6001200nmdiffuseopticalandcorrelationspectroscopies AT pagliazzimarco invivononinvasivecharacterizationofhumanbonebyhybridbroadband6001200nmdiffuseopticalandcorrelationspectroscopies AT negredoeugenia invivononinvasivecharacterizationofhumanbonebyhybridbroadband6001200nmdiffuseopticalandcorrelationspectroscopies AT martellifabrizio invivononinvasivecharacterizationofhumanbonebyhybridbroadband6001200nmdiffuseopticalandcorrelationspectroscopies AT farinaandrea invivononinvasivecharacterizationofhumanbonebyhybridbroadband6001200nmdiffuseopticalandcorrelationspectroscopies AT dallamoraalberto invivononinvasivecharacterizationofhumanbonebyhybridbroadband6001200nmdiffuseopticalandcorrelationspectroscopies AT lindnerclaus invivononinvasivecharacterizationofhumanbonebyhybridbroadband6001200nmdiffuseopticalandcorrelationspectroscopies AT farzamparisa invivononinvasivecharacterizationofhumanbonebyhybridbroadband6001200nmdiffuseopticalandcorrelationspectroscopies AT perezalvareznuria invivononinvasivecharacterizationofhumanbonebyhybridbroadband6001200nmdiffuseopticalandcorrelationspectroscopies AT puigjordi invivononinvasivecharacterizationofhumanbonebyhybridbroadband6001200nmdiffuseopticalandcorrelationspectroscopies AT taronipaola invivononinvasivecharacterizationofhumanbonebyhybridbroadband6001200nmdiffuseopticalandcorrelationspectroscopies AT pifferiantonio invivononinvasivecharacterizationofhumanbonebyhybridbroadband6001200nmdiffuseopticalandcorrelationspectroscopies AT durduranturgut invivononinvasivecharacterizationofhumanbonebyhybridbroadband6001200nmdiffuseopticalandcorrelationspectroscopies |