Cargando…
Pharmacological activation of FOXO3 suppresses triple-negative breast cancer in vitro and in vivo
Triple-negative breast cancer (TNBC) is the most lethal form of breast cancer. Lacking effective therapeutic options hinders treatment of TNBC. Here, we show that bepridil (BPD) and trifluoperazine (TFP), which are FDA-approved drugs for treatment of schizophrenia and angina respectively, inhibit Ak...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5173120/ https://www.ncbi.nlm.nih.gov/pubmed/27283899 http://dx.doi.org/10.18632/oncotarget.9881 |
_version_ | 1782484267439226880 |
---|---|
author | Park, See-Hyoung Chung, Young Min Ma, Jessica Yang, Qin Berek, Jonathan S. Hu, Mickey C-T. |
author_facet | Park, See-Hyoung Chung, Young Min Ma, Jessica Yang, Qin Berek, Jonathan S. Hu, Mickey C-T. |
author_sort | Park, See-Hyoung |
collection | PubMed |
description | Triple-negative breast cancer (TNBC) is the most lethal form of breast cancer. Lacking effective therapeutic options hinders treatment of TNBC. Here, we show that bepridil (BPD) and trifluoperazine (TFP), which are FDA-approved drugs for treatment of schizophrenia and angina respectively, inhibit Akt-pS473 phosphorylation and promote FOXO3 nuclear localization and activation in TNBC cells. BPD and TFP inhibit survival and proliferation in TNBC cells and suppress the growth of TNBC tumors, whereas silencing FOXO3 reduces the BPD- and TFP-mediated suppression of survival in TNBC cells. While BPD and TFP decrease the expression of oncogenic c-Myc, KLF5, and dopamine receptor DRD2 in TNBC cells, silencing FOXO3 diminishes BPD- and TFP-mediated repression of the expression of these proteins in TNBC cells. Since c-Myc, KLF5, and DRD2 have been suggested to increase cancer stem cell-like populations in various tumors, reducing these proteins in response to BPD and TFP suggests a novel FOXO3-dependent mechanism underlying BPD- and TFP-induced apoptosis in TNBC cells. |
format | Online Article Text |
id | pubmed-5173120 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-51731202016-12-23 Pharmacological activation of FOXO3 suppresses triple-negative breast cancer in vitro and in vivo Park, See-Hyoung Chung, Young Min Ma, Jessica Yang, Qin Berek, Jonathan S. Hu, Mickey C-T. Oncotarget Research Paper Triple-negative breast cancer (TNBC) is the most lethal form of breast cancer. Lacking effective therapeutic options hinders treatment of TNBC. Here, we show that bepridil (BPD) and trifluoperazine (TFP), which are FDA-approved drugs for treatment of schizophrenia and angina respectively, inhibit Akt-pS473 phosphorylation and promote FOXO3 nuclear localization and activation in TNBC cells. BPD and TFP inhibit survival and proliferation in TNBC cells and suppress the growth of TNBC tumors, whereas silencing FOXO3 reduces the BPD- and TFP-mediated suppression of survival in TNBC cells. While BPD and TFP decrease the expression of oncogenic c-Myc, KLF5, and dopamine receptor DRD2 in TNBC cells, silencing FOXO3 diminishes BPD- and TFP-mediated repression of the expression of these proteins in TNBC cells. Since c-Myc, KLF5, and DRD2 have been suggested to increase cancer stem cell-like populations in various tumors, reducing these proteins in response to BPD and TFP suggests a novel FOXO3-dependent mechanism underlying BPD- and TFP-induced apoptosis in TNBC cells. Impact Journals LLC 2016-06-07 /pmc/articles/PMC5173120/ /pubmed/27283899 http://dx.doi.org/10.18632/oncotarget.9881 Text en Copyright: © 2016 Park et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Park, See-Hyoung Chung, Young Min Ma, Jessica Yang, Qin Berek, Jonathan S. Hu, Mickey C-T. Pharmacological activation of FOXO3 suppresses triple-negative breast cancer in vitro and in vivo |
title | Pharmacological activation of FOXO3 suppresses triple-negative breast cancer in vitro and in vivo |
title_full | Pharmacological activation of FOXO3 suppresses triple-negative breast cancer in vitro and in vivo |
title_fullStr | Pharmacological activation of FOXO3 suppresses triple-negative breast cancer in vitro and in vivo |
title_full_unstemmed | Pharmacological activation of FOXO3 suppresses triple-negative breast cancer in vitro and in vivo |
title_short | Pharmacological activation of FOXO3 suppresses triple-negative breast cancer in vitro and in vivo |
title_sort | pharmacological activation of foxo3 suppresses triple-negative breast cancer in vitro and in vivo |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5173120/ https://www.ncbi.nlm.nih.gov/pubmed/27283899 http://dx.doi.org/10.18632/oncotarget.9881 |
work_keys_str_mv | AT parkseehyoung pharmacologicalactivationoffoxo3suppressestriplenegativebreastcancerinvitroandinvivo AT chungyoungmin pharmacologicalactivationoffoxo3suppressestriplenegativebreastcancerinvitroandinvivo AT majessica pharmacologicalactivationoffoxo3suppressestriplenegativebreastcancerinvitroandinvivo AT yangqin pharmacologicalactivationoffoxo3suppressestriplenegativebreastcancerinvitroandinvivo AT berekjonathans pharmacologicalactivationoffoxo3suppressestriplenegativebreastcancerinvitroandinvivo AT humickeyct pharmacologicalactivationoffoxo3suppressestriplenegativebreastcancerinvitroandinvivo |