Cargando…
Prediction and Classification of Human G-protein Coupled Receptors Based on Support Vector Machines
A computational system for the prediction and classification of human G-protein coupled receptors (GPCRs) has been developed based on the support vector machine (SVM) method and protein sequence information. The feature vectors used to develop the SVM prediction models consist of statistically signi...
Autores principales: | Wang, Yun-Fei, Chen, Huan, Zhou, Yan-Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5173243/ https://www.ncbi.nlm.nih.gov/pubmed/16689693 http://dx.doi.org/10.1016/S1672-0229(05)03034-2 |
Ejemplares similares
-
Predicting the Coupling Specificity of G-protein Coupled Receptors to G-proteins by Support Vector Machines
por: Guan, Cui-Ping, et al.
Publicado: (2005) -
Classification of G-protein coupled receptors based on support vector machine with maximum relevance minimum redundancy and genetic algorithm
por: Li, Zhanchao, et al.
Publicado: (2010) -
Prediction of DNA-binding protein based on statistical and geometric features and support vector machines
por: Zhou, Weiqiang, et al.
Publicado: (2011) -
Support Vector Machines for predicting protein structural class
por: Cai, Yu-Dong, et al.
Publicado: (2001) -
Support Vector Machine Implementations for Classification & Clustering
por: Winters-Hilt, Stephen, et al.
Publicado: (2006)