Cargando…
Intravascular Residence Time Determination for the Cyanide Antidote Dimethyl Trisulfide in Rat by Using Liquid-Liquid Extraction Coupled with High Performance Liquid Chromatography
These studies represent the first report on the intravascular residence time determinations for the cyanide antidote dimethyl trisulfide (DMTS) in a rat model by using high performance liquid chromatography coupled with ultraviolet absorption spectroscopy (HPLC-UV). The newly developed sample prepar...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5174746/ https://www.ncbi.nlm.nih.gov/pubmed/28053802 http://dx.doi.org/10.1155/2016/6546475 |
_version_ | 1782484551655751680 |
---|---|
author | De Silva, Deepthika Lee, Steven Duke, Anna Angalakurthi, Siva Chou, Ching-En Ebrahimpour, Afshin Thompson, David E. Petrikovics, Ilona |
author_facet | De Silva, Deepthika Lee, Steven Duke, Anna Angalakurthi, Siva Chou, Ching-En Ebrahimpour, Afshin Thompson, David E. Petrikovics, Ilona |
author_sort | De Silva, Deepthika |
collection | PubMed |
description | These studies represent the first report on the intravascular residence time determinations for the cyanide antidote dimethyl trisulfide (DMTS) in a rat model by using high performance liquid chromatography coupled with ultraviolet absorption spectroscopy (HPLC-UV). The newly developed sample preparation included liquid-liquid extraction by cyclohexanone. The calibration curves showed a linear response for DMTS concentrations between 0.010 and 0.30 mg/mL with R (2) = 0.9994. The limit of detection for DMTS via this extraction method was 0.010 mg/mL, and the limit of quantitation was 0.034 mg/mL. Thus this calibration curve provided a tool for determining DMTS in the range between 0.04 and 0.30 mg/mL. Rats were given 20 mg/kg DMTS dose (in 15% Polysorbate 80) intravenously, and blood samples were taken 15, 60, 90, 120, and 240 min after DMTS injections. The data points were plotted as DMTS concentration in RBCs versus time, and the intravascular residence time was determined graphically. The results indicated a half-life of 36 min in a rat model, suggesting that the circulation time is long enough to provide a reasonable time interval for cyanide antagonism. |
format | Online Article Text |
id | pubmed-5174746 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-51747462017-01-04 Intravascular Residence Time Determination for the Cyanide Antidote Dimethyl Trisulfide in Rat by Using Liquid-Liquid Extraction Coupled with High Performance Liquid Chromatography De Silva, Deepthika Lee, Steven Duke, Anna Angalakurthi, Siva Chou, Ching-En Ebrahimpour, Afshin Thompson, David E. Petrikovics, Ilona J Anal Methods Chem Research Article These studies represent the first report on the intravascular residence time determinations for the cyanide antidote dimethyl trisulfide (DMTS) in a rat model by using high performance liquid chromatography coupled with ultraviolet absorption spectroscopy (HPLC-UV). The newly developed sample preparation included liquid-liquid extraction by cyclohexanone. The calibration curves showed a linear response for DMTS concentrations between 0.010 and 0.30 mg/mL with R (2) = 0.9994. The limit of detection for DMTS via this extraction method was 0.010 mg/mL, and the limit of quantitation was 0.034 mg/mL. Thus this calibration curve provided a tool for determining DMTS in the range between 0.04 and 0.30 mg/mL. Rats were given 20 mg/kg DMTS dose (in 15% Polysorbate 80) intravenously, and blood samples were taken 15, 60, 90, 120, and 240 min after DMTS injections. The data points were plotted as DMTS concentration in RBCs versus time, and the intravascular residence time was determined graphically. The results indicated a half-life of 36 min in a rat model, suggesting that the circulation time is long enough to provide a reasonable time interval for cyanide antagonism. Hindawi Publishing Corporation 2016 2016-12-07 /pmc/articles/PMC5174746/ /pubmed/28053802 http://dx.doi.org/10.1155/2016/6546475 Text en Copyright © 2016 Deepthika De Silva et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article De Silva, Deepthika Lee, Steven Duke, Anna Angalakurthi, Siva Chou, Ching-En Ebrahimpour, Afshin Thompson, David E. Petrikovics, Ilona Intravascular Residence Time Determination for the Cyanide Antidote Dimethyl Trisulfide in Rat by Using Liquid-Liquid Extraction Coupled with High Performance Liquid Chromatography |
title | Intravascular Residence Time Determination for the Cyanide Antidote Dimethyl Trisulfide in Rat by Using Liquid-Liquid Extraction Coupled with High Performance Liquid Chromatography |
title_full | Intravascular Residence Time Determination for the Cyanide Antidote Dimethyl Trisulfide in Rat by Using Liquid-Liquid Extraction Coupled with High Performance Liquid Chromatography |
title_fullStr | Intravascular Residence Time Determination for the Cyanide Antidote Dimethyl Trisulfide in Rat by Using Liquid-Liquid Extraction Coupled with High Performance Liquid Chromatography |
title_full_unstemmed | Intravascular Residence Time Determination for the Cyanide Antidote Dimethyl Trisulfide in Rat by Using Liquid-Liquid Extraction Coupled with High Performance Liquid Chromatography |
title_short | Intravascular Residence Time Determination for the Cyanide Antidote Dimethyl Trisulfide in Rat by Using Liquid-Liquid Extraction Coupled with High Performance Liquid Chromatography |
title_sort | intravascular residence time determination for the cyanide antidote dimethyl trisulfide in rat by using liquid-liquid extraction coupled with high performance liquid chromatography |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5174746/ https://www.ncbi.nlm.nih.gov/pubmed/28053802 http://dx.doi.org/10.1155/2016/6546475 |
work_keys_str_mv | AT desilvadeepthika intravascularresidencetimedeterminationforthecyanideantidotedimethyltrisulfideinratbyusingliquidliquidextractioncoupledwithhighperformanceliquidchromatography AT leesteven intravascularresidencetimedeterminationforthecyanideantidotedimethyltrisulfideinratbyusingliquidliquidextractioncoupledwithhighperformanceliquidchromatography AT dukeanna intravascularresidencetimedeterminationforthecyanideantidotedimethyltrisulfideinratbyusingliquidliquidextractioncoupledwithhighperformanceliquidchromatography AT angalakurthisiva intravascularresidencetimedeterminationforthecyanideantidotedimethyltrisulfideinratbyusingliquidliquidextractioncoupledwithhighperformanceliquidchromatography AT chouchingen intravascularresidencetimedeterminationforthecyanideantidotedimethyltrisulfideinratbyusingliquidliquidextractioncoupledwithhighperformanceliquidchromatography AT ebrahimpourafshin intravascularresidencetimedeterminationforthecyanideantidotedimethyltrisulfideinratbyusingliquidliquidextractioncoupledwithhighperformanceliquidchromatography AT thompsondavide intravascularresidencetimedeterminationforthecyanideantidotedimethyltrisulfideinratbyusingliquidliquidextractioncoupledwithhighperformanceliquidchromatography AT petrikovicsilona intravascularresidencetimedeterminationforthecyanideantidotedimethyltrisulfideinratbyusingliquidliquidextractioncoupledwithhighperformanceliquidchromatography |