Cargando…
Multiple Linear Regressions by Maximizing the Likelihood under Assumption of Generalized Gauss-Laplace Distribution of the Error
Multiple linear regression analysis is widely used to link an outcome with predictors for better understanding of the behaviour of the outcome of interest. Usually, under the assumption that the errors follow a normal distribution, the coefficients of the model are estimated by minimizing the sum of...
Autores principales: | Jäntschi, Lorentz, Bálint, Donatella, Bolboacă, Sorana D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5174750/ https://www.ncbi.nlm.nih.gov/pubmed/28090215 http://dx.doi.org/10.1155/2016/8578156 |
Ejemplares similares
-
Inside of the Linear Relation between Dependent and Independent Variables
por: Jäntschi, Lorentz, et al.
Publicado: (2015) -
A Structural Modelling Study on Marine Sediments Toxicity
por: Jäntschi, Lorentz, et al.
Publicado: (2008) -
Predictivity Approach for Quantitative Structure-Property Models. Application for Blood-Brain Barrier Permeation of Diverse Drug-Like Compounds
por: Bolboacă, Sorana D., et al.
Publicado: (2011) -
Mapping Cigarettes Similarities using Cluster Analysis Methods
por: Bolboacă, Sorana D., et al.
Publicado: (2007) -
How Good Can the Characteristic Polynomial Be for Correlations?
por: Bolboaca, Sorana Daniela, et al.
Publicado: (2007)