Cargando…

Characterization of Pseudomonas aeruginosa Phage C11 and Identification of Host Genes Required for Virion Maturation

The underlying mechanisms of phage-host interactions largely remained to be elucidated. In this work, Pseudomonas aeruginosa phage C11 was first characterized as a Myoviridae virus having a linear dsDNA molecule of 94109 bp with 1173 bp identical terminal direct repeats (TDR). Then the mutants resis...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Xiaoli, You, Jiajia, Sun, Li, Yang, Xiaojing, Zhang, Tian, Huang, Kechong, Pan, Xuewei, Zhang, Fenjiao, He, Yang, Yang, Hongjiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175280/
https://www.ncbi.nlm.nih.gov/pubmed/28000703
http://dx.doi.org/10.1038/srep39130
Descripción
Sumario:The underlying mechanisms of phage-host interactions largely remained to be elucidated. In this work, Pseudomonas aeruginosa phage C11 was first characterized as a Myoviridae virus having a linear dsDNA molecule of 94109 bp with 1173 bp identical terminal direct repeats (TDR). Then the mutants resistant to phage C11 were screened in a Tn5G transposon mutant library of P. aeruginosa PAK, including two mutants with decreased adsorption rates (DAR) and five mutants with wild-type adsorption rates (WAR). When the WAR mutants were incubated with phage C11, their growth rates were significantly inhibited; the replication of the phage genomic DNA was detected in all the WAR mutants with the real-time quantitative PCR analysis; and the synthesized phage genomic DNA was processed into monomers for packaging evidenced by the southern blot analysis. Moreover, with strain PAK as indicator, small quantities of phage C11 were synthesized in the WAR mutants. Taken together, these data suggested the identified genes of the WAR mutants are necessary for efficient synthesis of the infectious phage particles. Finally, the WAR mutants were detected sensitive to two other Pseudomonas phages closely related with C11, further implying the evolved diversity and complexity of the phage-host interactions in both sides.