Cargando…

The C/ebp-Atf response element (CARE) location reveals two distinct Atf4-dependent, elongation-mediated mechanisms for transcriptional induction of aminoacyl-tRNA synthetase genes in response to amino acid limitation

The response to amino acid (AA) limitation of the entire aminoacyl-tRNA synthetase (ARS) gene family revealed that 16/20 of the genes encoding cytoplasmic-localized enzymes are transcriptionally induced by activating transcription factor 4 (Atf4) via C/ebp-Atf-Response-Element (CARE) enhancers. In c...

Descripción completa

Detalles Bibliográficos
Autores principales: Shan, Jixiu, Zhang, Fan, Sharkey, Jason, Tang, Tiffany A., Örd, Tönis, Kilberg, Michael S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175342/
https://www.ncbi.nlm.nih.gov/pubmed/27471030
http://dx.doi.org/10.1093/nar/gkw667
Descripción
Sumario:The response to amino acid (AA) limitation of the entire aminoacyl-tRNA synthetase (ARS) gene family revealed that 16/20 of the genes encoding cytoplasmic-localized enzymes are transcriptionally induced by activating transcription factor 4 (Atf4) via C/ebp-Atf-Response-Element (CARE) enhancers. In contrast, only 4/19 of the genes encoding mitochondrial-localized ARSs were weakly induced. Most of the activated genes have a functional CARE near the transcription start site (TSS), but for others the CARE is downstream. Regardless of the location of CARE enhancer, for all ARS genes there was constitutive association of RNA polymerase II (Pol II) and the general transcription machinery near the TSS. However, for those genes with a downstream CARE, Atf4, C/ebp-homology protein (Chop), Pol II and TATA-binding protein exhibited enhanced recruitment to the CARE during AA limitation. Increased Atf4 binding regulated the association of elongation factors at both the promoter and the enhancer regions, and inhibition of cyclin-dependent kinase 9 (CDK9), that regulates these elongation factors, blocked induction of the AA-responsive ARS genes. Protein pull-down assays indicated that Atf4 directly interacts with CDK9 and its associated protein cyclin T1. The results demonstrate that AA availability modulates the ARS gene family through modulation of transcription elongation.