Cargando…
Big Data Mining and Adverse Event Pattern Analysis in Clinical Drug Trials
Drug adverse events (AEs) are a major health threat to patients seeking medical treatment and a significant barrier in drug discovery and development. AEs are now required to be submitted during clinical trials and can be extracted from ClinicalTrials.gov (https://clinicaltrials.gov/), a database of...
Autores principales: | Federer, Callie, Yoo, Minjae, Tan, Aik Choon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175440/ https://www.ncbi.nlm.nih.gov/pubmed/27631620 http://dx.doi.org/10.1089/adt.2016.742 |
Ejemplares similares
-
K-Map: connecting kinases with therapeutics for drug repurposing and development
por: Kim, Jihye, et al.
Publicado: (2013) -
Systematic drug repositioning through mining adverse event data in ClinicalTrials.gov
por: Su, Eric Wen, et al.
Publicado: (2017) -
Integrating heterogeneous drug sensitivity data from cancer pharmacogenomic studies
por: Pozdeyev, Nikita, et al.
Publicado: (2016) -
Mining Patterns of Adverse Events Using Aggregated Clinical Trial Results
por: Luo, Zhihui, et al.
Publicado: (2013) -
Population Analysis of Adverse Events in Different Age Groups Using Big Clinical Trials Data
por: Luo, Jake, et al.
Publicado: (2016)