Cargando…
Investigating Neovascularization in Rat Decellularized Intestine: An In Vitro Platform for Studying Angiogenesis
One of the main challenges currently faced by tissue engineers is the loss of tissues postimplantation due to delayed neovascularization. Several strategies are under investigation to create vascularized tissue, but none have yet overcome this problem. In this study, we produced a decellularized nat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175441/ https://www.ncbi.nlm.nih.gov/pubmed/27676406 http://dx.doi.org/10.1089/ten.tea.2016.0131 |
_version_ | 1782484659535347712 |
---|---|
author | Dew, Lindsey English, William R. Chong, Chuh K. MacNeil, Sheila |
author_facet | Dew, Lindsey English, William R. Chong, Chuh K. MacNeil, Sheila |
author_sort | Dew, Lindsey |
collection | PubMed |
description | One of the main challenges currently faced by tissue engineers is the loss of tissues postimplantation due to delayed neovascularization. Several strategies are under investigation to create vascularized tissue, but none have yet overcome this problem. In this study, we produced a decellularized natural vascular scaffold from rat intestine to use as an in vitro platform for neovascularization studies for tissue-engineered constructs. Decellularization resulted in almost complete (97%) removal of nuclei and DNA, while collagen, glycosaminoglycan, and laminin content were preserved. Decellularization did, however, result in the loss of elastin and fibronectin. Some proangiogenic factors were retained, as fragments of decellularized intestine were able to stimulate angiogenesis in the chick chorioallantoic membrane assay. We demonstrated that decellularization left perfusable vascular channels intact, and these could be repopulated with human dermal microvascular endothelial cells. Optimization of reendothelialization of the vascular channels showed that this was improved by continuous perfusion of the vasculature and further improved by infusion of human dermal fibroblasts into the intestinal lumen, from where they invaded into the decellularized tissue. Finally we explored the ability of the perfused cells to form new vessels. In the absence of exogenous angiogenic stimuli, Dll4, a marker of endothelial capillary-tip cell activation during sprouting angiogenesis, was absent, indicating that the reformed vasculature was largely quiescent. However, after addition of vascular endothelial growth factor A, Dll4-positive endothelial cells could be detected, demonstrating that this engineered vascular construct maintained its capacity for neovascularization. In summary, we have demonstrated how a natural xenobiotic vasculature can be used as an in vitro model platform to study neovascularization and provide information on factors that are critical for efficient reendothelialization of decellularized tissue. |
format | Online Article Text |
id | pubmed-5175441 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Mary Ann Liebert, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-51754412017-01-11 Investigating Neovascularization in Rat Decellularized Intestine: An In Vitro Platform for Studying Angiogenesis Dew, Lindsey English, William R. Chong, Chuh K. MacNeil, Sheila Tissue Eng Part A Original Articles One of the main challenges currently faced by tissue engineers is the loss of tissues postimplantation due to delayed neovascularization. Several strategies are under investigation to create vascularized tissue, but none have yet overcome this problem. In this study, we produced a decellularized natural vascular scaffold from rat intestine to use as an in vitro platform for neovascularization studies for tissue-engineered constructs. Decellularization resulted in almost complete (97%) removal of nuclei and DNA, while collagen, glycosaminoglycan, and laminin content were preserved. Decellularization did, however, result in the loss of elastin and fibronectin. Some proangiogenic factors were retained, as fragments of decellularized intestine were able to stimulate angiogenesis in the chick chorioallantoic membrane assay. We demonstrated that decellularization left perfusable vascular channels intact, and these could be repopulated with human dermal microvascular endothelial cells. Optimization of reendothelialization of the vascular channels showed that this was improved by continuous perfusion of the vasculature and further improved by infusion of human dermal fibroblasts into the intestinal lumen, from where they invaded into the decellularized tissue. Finally we explored the ability of the perfused cells to form new vessels. In the absence of exogenous angiogenic stimuli, Dll4, a marker of endothelial capillary-tip cell activation during sprouting angiogenesis, was absent, indicating that the reformed vasculature was largely quiescent. However, after addition of vascular endothelial growth factor A, Dll4-positive endothelial cells could be detected, demonstrating that this engineered vascular construct maintained its capacity for neovascularization. In summary, we have demonstrated how a natural xenobiotic vasculature can be used as an in vitro model platform to study neovascularization and provide information on factors that are critical for efficient reendothelialization of decellularized tissue. Mary Ann Liebert, Inc. 2016-12-01 2016-12-01 /pmc/articles/PMC5175441/ /pubmed/27676406 http://dx.doi.org/10.1089/ten.tea.2016.0131 Text en © Lindsey Dew et al., 2016; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. |
spellingShingle | Original Articles Dew, Lindsey English, William R. Chong, Chuh K. MacNeil, Sheila Investigating Neovascularization in Rat Decellularized Intestine: An In Vitro Platform for Studying Angiogenesis |
title | Investigating Neovascularization in Rat Decellularized Intestine: An In Vitro Platform for Studying Angiogenesis |
title_full | Investigating Neovascularization in Rat Decellularized Intestine: An In Vitro Platform for Studying Angiogenesis |
title_fullStr | Investigating Neovascularization in Rat Decellularized Intestine: An In Vitro Platform for Studying Angiogenesis |
title_full_unstemmed | Investigating Neovascularization in Rat Decellularized Intestine: An In Vitro Platform for Studying Angiogenesis |
title_short | Investigating Neovascularization in Rat Decellularized Intestine: An In Vitro Platform for Studying Angiogenesis |
title_sort | investigating neovascularization in rat decellularized intestine: an in vitro platform for studying angiogenesis |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175441/ https://www.ncbi.nlm.nih.gov/pubmed/27676406 http://dx.doi.org/10.1089/ten.tea.2016.0131 |
work_keys_str_mv | AT dewlindsey investigatingneovascularizationinratdecellularizedintestineaninvitroplatformforstudyingangiogenesis AT englishwilliamr investigatingneovascularizationinratdecellularizedintestineaninvitroplatformforstudyingangiogenesis AT chongchuhk investigatingneovascularizationinratdecellularizedintestineaninvitroplatformforstudyingangiogenesis AT macneilsheila investigatingneovascularizationinratdecellularizedintestineaninvitroplatformforstudyingangiogenesis |