Cargando…

2,2′,3,5′,6-Pentachlorobiphenyl (PCB 95) Is Atropselectively Metabolized to para-Hydroxylated Metabolites by Human Liver Microsomes

[Image: see text] Exposure to neurotoxic, chiral PCBs has been associated with neurodevelopmental disorders, but their metabolism in humans remains unexplored. We investigated the enantioselective metabolism of PCB 95 by human liver microsomes (HLMs) to potentially neurotoxic, hydroxylated metabolit...

Descripción completa

Detalles Bibliográficos
Autores principales: Uwimana, Eric, Li, Xueshu, Lehmler, Hans-Joachim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2016
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175585/
https://www.ncbi.nlm.nih.gov/pubmed/27989147
http://dx.doi.org/10.1021/acs.chemrestox.6b00371
Descripción
Sumario:[Image: see text] Exposure to neurotoxic, chiral PCBs has been associated with neurodevelopmental disorders, but their metabolism in humans remains unexplored. We investigated the enantioselective metabolism of PCB 95 by human liver microsomes (HLMs) to potentially neurotoxic, hydroxylated metabolites (OH-PCBs). OH-PCB profiles formed in experiments with HLMs differed from metabolite profiles reported for rodent species. The second eluting atropisomer of 2,2′,3,5′,6-pentachlorobiphenyl-4′-ol, the major metabolite, was preferentially formed by all HLM preparations investigated. Differences in metabolite formation rates were observed with single donor HLMs. The metabolism of PCBs and its role in PCB-mediated neurodevelopmental disorders need to be further characterized.