Cargando…
MRI FLAIR lesion segmentation in multiple sclerosis: Does automated segmentation hold up with manual annotation?
INTRODUCTION: Magnetic resonance imaging (MRI) has become key in the diagnosis and disease monitoring of patients with multiple sclerosis (MS). Both, T2 lesion load and Gadolinium (Gd) enhancing T1 lesions represent important endpoints in MS clinical trials by serving as a surrogate of clinical dise...
Autores principales: | Egger, Christine, Opfer, Roland, Wang, Chenyu, Kepp, Timo, Sormani, Maria Pia, Spies, Lothar, Barnett, Michael, Schippling, Sven |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175993/ https://www.ncbi.nlm.nih.gov/pubmed/28018853 http://dx.doi.org/10.1016/j.nicl.2016.11.020 |
Ejemplares similares
-
Automatic segmentation of the thalamus using a massively trained 3D convolutional neural network: higher sensitivity for the detection of reduced thalamus volume by improved inter-scanner stability
por: Opfer, Roland, et al.
Publicado: (2022) -
Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks
por: Krüger, Julia, et al.
Publicado: (2020) -
Automated Segmentation of Hyperintense Regions in FLAIR MRI Using Deep Learning
por: Korfiatis, Panagiotis, et al.
Publicado: (2016) -
Single-subject analysis of regional brain volumetric measures can be strongly influenced by the method for head size adjustment
por: Opfer, Roland, et al.
Publicado: (2022) -
Electroanatomic mapping of atrial tachycardia—Manual vs automated annotation()
por: Knecht, Sven, et al.
Publicado: (2016)