Cargando…
Quantification of Serial Cerebral Blood Flow in Acute Stroke Using Arterial Spin Labeling
BACKGROUND AND PURPOSE—: Perfusion-weighted imaging is used to select patients with acute ischemic stroke for intervention, but knowledge of cerebral perfusion can also inform the understanding of ischemic injury. Arterial spin labeling allows repeated measurement of absolute cerebral blood flow (CB...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175999/ https://www.ncbi.nlm.nih.gov/pubmed/27879446 http://dx.doi.org/10.1161/STROKEAHA.116.014707 |
_version_ | 1782484752745365504 |
---|---|
author | Harston, George W.J. Okell, Thomas W. Sheerin, Fintan Schulz, Ursula Mathieson, Phil Reckless, Ian Shah, Kunal Ford, Gary A. Chappell, Michael A. Jezzard, Peter Kennedy, James |
author_facet | Harston, George W.J. Okell, Thomas W. Sheerin, Fintan Schulz, Ursula Mathieson, Phil Reckless, Ian Shah, Kunal Ford, Gary A. Chappell, Michael A. Jezzard, Peter Kennedy, James |
author_sort | Harston, George W.J. |
collection | PubMed |
description | BACKGROUND AND PURPOSE—: Perfusion-weighted imaging is used to select patients with acute ischemic stroke for intervention, but knowledge of cerebral perfusion can also inform the understanding of ischemic injury. Arterial spin labeling allows repeated measurement of absolute cerebral blood flow (CBF) without the need for exogenous contrast. The aim of this study was to explore the relationship between dynamic CBF and tissue outcome in the month after stroke onset. METHODS—: Patients with nonlacunar ischemic stroke underwent ≤5 repeated magnetic resonance imaging scans at presentation, 2 hours, 1 day, 1 week, and 1 month. Imaging included vessel-encoded pseudocontinuous arterial spin labeling using multiple postlabeling delays to quantify CBF in gray matter regions of interest. Receiver–operator characteristic curves were used to predict tissue outcome using CBF. Repeatability was assessed in 6 healthy volunteers and compared with contralateral regions of patients. Diffusion-weighted and T2-weighted fluid attenuated inversion recovery imaging were used to define tissue outcome. RESULTS—: Forty patients were included. In contralateral regions of patients, there was significant variation of CBF between individuals, but not between scan times (mean±SD: 53±42 mL/100 g/min). Within ischemic regions, mean CBF was lowest in ischemic core (17±23 mL/100 g/min), followed by regions of early (21±26 mL/100 g/min) and late infarct growth (25±35 mL/100 g/min; ANOVA P<0.0001). Between patients, there was marked overlap in presenting and serial CBF values. CONCLUSIONS—: Knowledge of perfusion dynamics partially explained tissue fate. Factors such as metabolism and tissue susceptibility are also likely to influence tissue outcome. |
format | Online Article Text |
id | pubmed-5175999 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Lippincott Williams & Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-51759992017-01-04 Quantification of Serial Cerebral Blood Flow in Acute Stroke Using Arterial Spin Labeling Harston, George W.J. Okell, Thomas W. Sheerin, Fintan Schulz, Ursula Mathieson, Phil Reckless, Ian Shah, Kunal Ford, Gary A. Chappell, Michael A. Jezzard, Peter Kennedy, James Stroke Original Contributions BACKGROUND AND PURPOSE—: Perfusion-weighted imaging is used to select patients with acute ischemic stroke for intervention, but knowledge of cerebral perfusion can also inform the understanding of ischemic injury. Arterial spin labeling allows repeated measurement of absolute cerebral blood flow (CBF) without the need for exogenous contrast. The aim of this study was to explore the relationship between dynamic CBF and tissue outcome in the month after stroke onset. METHODS—: Patients with nonlacunar ischemic stroke underwent ≤5 repeated magnetic resonance imaging scans at presentation, 2 hours, 1 day, 1 week, and 1 month. Imaging included vessel-encoded pseudocontinuous arterial spin labeling using multiple postlabeling delays to quantify CBF in gray matter regions of interest. Receiver–operator characteristic curves were used to predict tissue outcome using CBF. Repeatability was assessed in 6 healthy volunteers and compared with contralateral regions of patients. Diffusion-weighted and T2-weighted fluid attenuated inversion recovery imaging were used to define tissue outcome. RESULTS—: Forty patients were included. In contralateral regions of patients, there was significant variation of CBF between individuals, but not between scan times (mean±SD: 53±42 mL/100 g/min). Within ischemic regions, mean CBF was lowest in ischemic core (17±23 mL/100 g/min), followed by regions of early (21±26 mL/100 g/min) and late infarct growth (25±35 mL/100 g/min; ANOVA P<0.0001). Between patients, there was marked overlap in presenting and serial CBF values. CONCLUSIONS—: Knowledge of perfusion dynamics partially explained tissue fate. Factors such as metabolism and tissue susceptibility are also likely to influence tissue outcome. Lippincott Williams & Wilkins 2017-01 2016-12-23 /pmc/articles/PMC5175999/ /pubmed/27879446 http://dx.doi.org/10.1161/STROKEAHA.116.014707 Text en © 2016 The Authors. Stroke is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited. |
spellingShingle | Original Contributions Harston, George W.J. Okell, Thomas W. Sheerin, Fintan Schulz, Ursula Mathieson, Phil Reckless, Ian Shah, Kunal Ford, Gary A. Chappell, Michael A. Jezzard, Peter Kennedy, James Quantification of Serial Cerebral Blood Flow in Acute Stroke Using Arterial Spin Labeling |
title | Quantification of Serial Cerebral Blood Flow in Acute Stroke Using Arterial Spin Labeling |
title_full | Quantification of Serial Cerebral Blood Flow in Acute Stroke Using Arterial Spin Labeling |
title_fullStr | Quantification of Serial Cerebral Blood Flow in Acute Stroke Using Arterial Spin Labeling |
title_full_unstemmed | Quantification of Serial Cerebral Blood Flow in Acute Stroke Using Arterial Spin Labeling |
title_short | Quantification of Serial Cerebral Blood Flow in Acute Stroke Using Arterial Spin Labeling |
title_sort | quantification of serial cerebral blood flow in acute stroke using arterial spin labeling |
topic | Original Contributions |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175999/ https://www.ncbi.nlm.nih.gov/pubmed/27879446 http://dx.doi.org/10.1161/STROKEAHA.116.014707 |
work_keys_str_mv | AT harstongeorgewj quantificationofserialcerebralbloodflowinacutestrokeusingarterialspinlabeling AT okellthomasw quantificationofserialcerebralbloodflowinacutestrokeusingarterialspinlabeling AT sheerinfintan quantificationofserialcerebralbloodflowinacutestrokeusingarterialspinlabeling AT schulzursula quantificationofserialcerebralbloodflowinacutestrokeusingarterialspinlabeling AT mathiesonphil quantificationofserialcerebralbloodflowinacutestrokeusingarterialspinlabeling AT recklessian quantificationofserialcerebralbloodflowinacutestrokeusingarterialspinlabeling AT shahkunal quantificationofserialcerebralbloodflowinacutestrokeusingarterialspinlabeling AT fordgarya quantificationofserialcerebralbloodflowinacutestrokeusingarterialspinlabeling AT chappellmichaela quantificationofserialcerebralbloodflowinacutestrokeusingarterialspinlabeling AT jezzardpeter quantificationofserialcerebralbloodflowinacutestrokeusingarterialspinlabeling AT kennedyjames quantificationofserialcerebralbloodflowinacutestrokeusingarterialspinlabeling |