Cargando…
Appropriate inclusion of interactions was needed to avoid bias in multiple imputation
OBJECTIVE: Missing data are a pervasive problem, often leading to bias in complete records analysis (CRA). Multiple imputation (MI) via chained equations is one solution, but its use in the presence of interactions is not straightforward. STUDY DESIGN AND SETTING: We simulated data with outcome Y de...
Autores principales: | Tilling, Kate, Williamson, Elizabeth J., Spratt, Michael, Sterne, Jonathan A.C., Carpenter, James R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5176003/ https://www.ncbi.nlm.nih.gov/pubmed/27445178 http://dx.doi.org/10.1016/j.jclinepi.2016.07.004 |
Ejemplares similares
-
Accounting for missing data in statistical analyses: multiple imputation is not always the answer
por: Hughes, Rachael A, et al.
Publicado: (2019) -
Multiple imputation of missing data under missing at random: including a collider as an auxiliary variable in the imputation model can induce bias
por: Curnow, Elinor, et al.
Publicado: (2023) -
Comparison of imputation variance estimators
por: Hughes, RA, et al.
Publicado: (2014) -
Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls
por: Sterne, Jonathan A C, et al.
Publicado: (2009) -
Multiple imputation using linked proxy outcome data resulted in important bias reduction and efficiency gains: a simulation study
por: Cornish, R. P., et al.
Publicado: (2017)