Cargando…
Comparing Selections of Environmental Variables for Ecological Studies: A Focus on Terrain Attributes
Selecting appropriate environmental variables is a key step in ecology. Terrain attributes (e.g. slope, rugosity) are routinely used as abiotic surrogates of species distribution and to produce habitat maps that can be used in decision-making for conservation or management. Selecting appropriate ter...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5176161/ https://www.ncbi.nlm.nih.gov/pubmed/28002453 http://dx.doi.org/10.1371/journal.pone.0167128 |
_version_ | 1782484769318109184 |
---|---|
author | Lecours, Vincent Brown, Craig J. Devillers, Rodolphe Lucieer, Vanessa L. Edinger, Evan N. |
author_facet | Lecours, Vincent Brown, Craig J. Devillers, Rodolphe Lucieer, Vanessa L. Edinger, Evan N. |
author_sort | Lecours, Vincent |
collection | PubMed |
description | Selecting appropriate environmental variables is a key step in ecology. Terrain attributes (e.g. slope, rugosity) are routinely used as abiotic surrogates of species distribution and to produce habitat maps that can be used in decision-making for conservation or management. Selecting appropriate terrain attributes for ecological studies may be a challenging process that can lead users to select a subjective, potentially sub-optimal combination of attributes for their applications. The objective of this paper is to assess the impacts of subjectively selecting terrain attributes for ecological applications by comparing the performance of different combinations of terrain attributes in the production of habitat maps and species distribution models. Seven different selections of terrain attributes, alone or in combination with other environmental variables, were used to map benthic habitats of German Bank (off Nova Scotia, Canada). 29 maps of potential habitats based on unsupervised classifications of biophysical characteristics of German Bank were produced, and 29 species distribution models of sea scallops were generated using MaxEnt. The performances of the 58 maps were quantified and compared to evaluate the effectiveness of the various combinations of environmental variables. One of the combinations of terrain attributes–recommended in a related study and that includes a measure of relative position, slope, two measures of orientation, topographic mean and a measure of rugosity–yielded better results than the other selections for both methodologies, confirming that they together best describe terrain properties. Important differences in performance (up to 47% in accuracy measurement) and spatial outputs (up to 58% in spatial distribution of habitats) highlighted the importance of carefully selecting variables for ecological applications. This paper demonstrates that making a subjective choice of variables may reduce map accuracy and produce maps that do not adequately represent habitats and species distributions, thus having important implications when these maps are used for decision-making. |
format | Online Article Text |
id | pubmed-5176161 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-51761612017-01-04 Comparing Selections of Environmental Variables for Ecological Studies: A Focus on Terrain Attributes Lecours, Vincent Brown, Craig J. Devillers, Rodolphe Lucieer, Vanessa L. Edinger, Evan N. PLoS One Research Article Selecting appropriate environmental variables is a key step in ecology. Terrain attributes (e.g. slope, rugosity) are routinely used as abiotic surrogates of species distribution and to produce habitat maps that can be used in decision-making for conservation or management. Selecting appropriate terrain attributes for ecological studies may be a challenging process that can lead users to select a subjective, potentially sub-optimal combination of attributes for their applications. The objective of this paper is to assess the impacts of subjectively selecting terrain attributes for ecological applications by comparing the performance of different combinations of terrain attributes in the production of habitat maps and species distribution models. Seven different selections of terrain attributes, alone or in combination with other environmental variables, were used to map benthic habitats of German Bank (off Nova Scotia, Canada). 29 maps of potential habitats based on unsupervised classifications of biophysical characteristics of German Bank were produced, and 29 species distribution models of sea scallops were generated using MaxEnt. The performances of the 58 maps were quantified and compared to evaluate the effectiveness of the various combinations of environmental variables. One of the combinations of terrain attributes–recommended in a related study and that includes a measure of relative position, slope, two measures of orientation, topographic mean and a measure of rugosity–yielded better results than the other selections for both methodologies, confirming that they together best describe terrain properties. Important differences in performance (up to 47% in accuracy measurement) and spatial outputs (up to 58% in spatial distribution of habitats) highlighted the importance of carefully selecting variables for ecological applications. This paper demonstrates that making a subjective choice of variables may reduce map accuracy and produce maps that do not adequately represent habitats and species distributions, thus having important implications when these maps are used for decision-making. Public Library of Science 2016-12-21 /pmc/articles/PMC5176161/ /pubmed/28002453 http://dx.doi.org/10.1371/journal.pone.0167128 Text en © 2016 Lecours et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Lecours, Vincent Brown, Craig J. Devillers, Rodolphe Lucieer, Vanessa L. Edinger, Evan N. Comparing Selections of Environmental Variables for Ecological Studies: A Focus on Terrain Attributes |
title | Comparing Selections of Environmental Variables for Ecological Studies: A Focus on Terrain Attributes |
title_full | Comparing Selections of Environmental Variables for Ecological Studies: A Focus on Terrain Attributes |
title_fullStr | Comparing Selections of Environmental Variables for Ecological Studies: A Focus on Terrain Attributes |
title_full_unstemmed | Comparing Selections of Environmental Variables for Ecological Studies: A Focus on Terrain Attributes |
title_short | Comparing Selections of Environmental Variables for Ecological Studies: A Focus on Terrain Attributes |
title_sort | comparing selections of environmental variables for ecological studies: a focus on terrain attributes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5176161/ https://www.ncbi.nlm.nih.gov/pubmed/28002453 http://dx.doi.org/10.1371/journal.pone.0167128 |
work_keys_str_mv | AT lecoursvincent comparingselectionsofenvironmentalvariablesforecologicalstudiesafocusonterrainattributes AT browncraigj comparingselectionsofenvironmentalvariablesforecologicalstudiesafocusonterrainattributes AT devillersrodolphe comparingselectionsofenvironmentalvariablesforecologicalstudiesafocusonterrainattributes AT lucieervanessal comparingselectionsofenvironmentalvariablesforecologicalstudiesafocusonterrainattributes AT edingerevann comparingselectionsofenvironmentalvariablesforecologicalstudiesafocusonterrainattributes |