Cargando…
Seeing It All: Evaluating Supervised Machine Learning Methods for the Classification of Diverse Otariid Behaviours
Constructing activity budgets for marine animals when they are at sea and cannot be directly observed is challenging, but recent advances in bio-logging technology offer solutions to this problem. Accelerometers can potentially identify a wide range of behaviours for animals based on unique patterns...
Autores principales: | Ladds, Monique A., Thompson, Adam P., Slip, David J., Hocking, David P., Harcourt, Robert G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5176164/ https://www.ncbi.nlm.nih.gov/pubmed/28002450 http://dx.doi.org/10.1371/journal.pone.0166898 |
Ejemplares similares
-
Intrinsic and extrinsic influences on standard metabolic rates of three species of Australian otariid
por: Ladds, Monique A., et al.
Publicado: (2017) -
Using accelerometers to develop time-energy budgets of wild fur seals from captive surrogates
por: Ladds, Monique A., et al.
Publicado: (2018) -
Diving deep into trouble: the role of foraging strategy and morphology in
adapting to a changing environment
por: Ladds, Monique, et al.
Publicado: (2020) -
Proxies of energy expenditure for marine mammals: an experimental test of “the time trap”
por: Ladds, Monique A., et al.
Publicado: (2017) -
The utility of accelerometers to predict stroke rate in captive fur seals and sea lions
por: Ladds, Monique A., et al.
Publicado: (2017)