Cargando…
Applying Support Vector Machines for Gene ontology based gene function prediction
BACKGROUND: The current progress in sequencing projects calls for rapid, reliable and accurate function assignments of gene products. A variety of methods has been designed to annotate sequences on a large scale. However, these methods can either only be applied for specific subsets, or their result...
Autores principales: | Vinayagam, Arunachalam, König, Rainer, Moormann, Jutta, Schubert, Falk, Eils, Roland, Glatting, Karl-Heinz, Suhai, Sándor |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC517617/ https://www.ncbi.nlm.nih.gov/pubmed/15333146 http://dx.doi.org/10.1186/1471-2105-5-116 |
Ejemplares similares
-
GOPET: A tool for automated predictions of Gene Ontology terms
por: Vinayagam, Arunachalam, et al.
Publicado: (2006) -
Identifying essential genes in bacterial metabolic networks with machine learning methods
por: Plaimas, Kitiporn, et al.
Publicado: (2010) -
Using gene expression data and network topology to detect substantial pathways, clusters and switches during oxygen deprivation of Escherichia coli
por: Schramm, Gunnar, et al.
Publicado: (2007) -
cDNA2Genome: A tool for mapping and annotating cDNAs
por: del Val, Coral, et al.
Publicado: (2003) -
Improving detection of differentially expressed gene sets by applying cluster enrichment analysis to Gene Ontology
por: Xu, Tao, et al.
Publicado: (2009)