Cargando…
Mobile robots exploration through cnn-based reinforcement learning
Exploration in an unknown environment is an elemental application for mobile robots. In this paper, we outlined a reinforcement learning method aiming for solving the exploration problem in a corridor environment. The learning model took the depth image from an RGB-D sensor as the only input. The fe...
Autores principales: | Tai, Lei, Liu, Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5177670/ https://www.ncbi.nlm.nih.gov/pubmed/28066702 http://dx.doi.org/10.1186/s40638-016-0055-x |
Ejemplares similares
-
A Reinforcement Learning Based Dirt-Exploration for Cleaning-Auditing Robot
por: Pathmakumar, Thejus, et al.
Publicado: (2021) -
Deep Reinforcement Learning for Indoor Mobile Robot Path Planning
por: Gao, Junli, et al.
Publicado: (2020) -
Reinforcement-Learning-Based Route Generation for Heavy-Traffic Autonomous Mobile Robot Systems
por: Kozjek, Dominik, et al.
Publicado: (2021) -
The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement Learning
por: Yu, Jinglun, et al.
Publicado: (2020) -
Learning Mobile Manipulation through Deep Reinforcement Learning
por: Wang, Cong, et al.
Publicado: (2020)