Cargando…
TM4SF10 gene sequencing in XLMR patients identifies common polymorphisms but no disease-associated mutation
BACKGROUND: The TM4SF10 gene encodes a putative four-transmembrane domains protein of unknown function termed Brain Cell Membrane Protein 1 (BCMP1), and is abundantly expressed in the brain. This gene is located on the short arm of human chromosome X at p21.1. The hypothesis that mutations in the TM...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC517934/ https://www.ncbi.nlm.nih.gov/pubmed/15345028 http://dx.doi.org/10.1186/1471-2350-5-22 |
Sumario: | BACKGROUND: The TM4SF10 gene encodes a putative four-transmembrane domains protein of unknown function termed Brain Cell Membrane Protein 1 (BCMP1), and is abundantly expressed in the brain. This gene is located on the short arm of human chromosome X at p21.1. The hypothesis that mutations in the TM4SF10 gene are associated with impaired brain function was investigated by sequencing the gene in individuals with hereditary X-linked mental retardation (XLMR). METHODS: The coding region (543 bp) of TM4SF10, including intronic junctions, and the long 3' untranslated region (3 233 bp), that has been conserved during evolution, were sequenced in 16 male XLMR patients from 14 unrelated families with definite, or suggestive, linkage to the TM4SF10 gene locus, and in 5 normal males. RESULTS: Five sequence changes were identified but none was found to be associated with the disease. Two of these changes correspond to previously known SNPs, while three other were novel SNPs in the TM4SF10 gene. CONCLUSION: We have investigated the majority of the known MRX families linked to the TM4SF10 gene region. In the absence of mutations detected, our study indicates that alterations of TM4SF10 are not a frequent cause of XLMR. |
---|