Cargando…
iCAGES: integrated CAncer GEnome Score for comprehensively prioritizing driver genes in personal cancer genomes
Cancer results from the acquisition of somatic driver mutations. Several computational tools can predict driver genes from population-scale genomic data, but tools for analyzing personal cancer genomes are underdeveloped. Here we developed iCAGES, a novel statistical framework that infers driver var...
Autores principales: | Dong, Chengliang, Guo, Yunfei, Yang, Hui, He, Zeyu, Liu, Xiaoming, Wang, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5180414/ https://www.ncbi.nlm.nih.gov/pubmed/28007024 http://dx.doi.org/10.1186/s13073-016-0390-0 |
Ejemplares similares
-
Personalized cancer therapy prioritization based on driver alteration co-occurrence patterns
por: Mateo, Lidia, et al.
Publicado: (2020) -
IW-Scoring: an Integrative Weighted Scoring framework for annotating and prioritizing genetic variations in the noncoding genome
por: Wang, Jun, et al.
Publicado: (2018) -
Ultrafast and scalable variant annotation and prioritization with big functional genomics data
por: Huang, Dandan, et al.
Publicado: (2020) -
DawnRank: discovering personalized driver genes in cancer
por: Hou, Jack P, et al.
Publicado: (2014) -
SB Driver Analysis: a Sleeping Beauty cancer driver analysis framework for identifying and prioritizing experimentally actionable oncogenes and tumor suppressors
por: Newberg, Justin Y, et al.
Publicado: (2018)