Cargando…

A new S-type eigenvalue inclusion set for tensors and its applications

In this paper, a new S-type eigenvalue localization set for a tensor is derived by dividing [Formula: see text] into disjoint subsets S and its complement. It is proved that this new set is sharper than those presented by Qi (J. Symb. Comput. 40:1302-1324, 2005), Li et al. (Numer. Linear Algebra App...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Zheng-Ge, Wang, Li-Gong, Xu, Zhong, Cui, Jing-Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5181102/
https://www.ncbi.nlm.nih.gov/pubmed/28077920
http://dx.doi.org/10.1186/s13660-016-1200-3
Descripción
Sumario:In this paper, a new S-type eigenvalue localization set for a tensor is derived by dividing [Formula: see text] into disjoint subsets S and its complement. It is proved that this new set is sharper than those presented by Qi (J. Symb. Comput. 40:1302-1324, 2005), Li et al. (Numer. Linear Algebra Appl. 21:39-50, 2014) and Li et al. (Linear Algebra Appl. 481:36-53, 2015). As applications of the results, new bounds for the spectral radius of nonnegative tensors and the minimum H-eigenvalue of strong M-tensors are established, and we prove that these bounds are tighter than those obtained by Li et al. (Numer. Linear Algebra Appl. 21:39-50, 2014) and He and Huang (J. Inequal. Appl. 2014:114, 2014).