Cargando…
A new S-type eigenvalue inclusion set for tensors and its applications
In this paper, a new S-type eigenvalue localization set for a tensor is derived by dividing [Formula: see text] into disjoint subsets S and its complement. It is proved that this new set is sharper than those presented by Qi (J. Symb. Comput. 40:1302-1324, 2005), Li et al. (Numer. Linear Algebra App...
Autores principales: | Huang, Zheng-Ge, Wang, Li-Gong, Xu, Zhong, Cui, Jing-Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5181102/ https://www.ncbi.nlm.nih.gov/pubmed/28077920 http://dx.doi.org/10.1186/s13660-016-1200-3 |
Ejemplares similares
-
Two S-type Z-eigenvalue inclusion sets for tensors
por: Wang, Yanan, et al.
Publicado: (2017) -
An eigenvalue localization set for tensors and its applications
por: Zhao, Jianxing, et al.
Publicado: (2017) -
Tensor eigenvalues and their applications
por: Qi, Liqun, et al.
Publicado: (2018) -
A new Z-eigenvalue localization set for tensors
por: Zhao, Jianxing
Publicado: (2017) -
A new localization set for generalized eigenvalues
por: Gao, Jing, et al.
Publicado: (2017)