Cargando…

genipe: an automated genome-wide imputation pipeline with automatic reporting and statistical tools

Summary: Genotype imputation is now commonly performed following genome-wide genotyping experiments. Imputation increases the density of analyzed genotypes in the dataset, enabling fine-mapping across the genome. However, the process of imputation using the most recent publicly available reference d...

Descripción completa

Detalles Bibliográficos
Autores principales: Lemieux Perreault, Louis-Philippe, Legault, Marc-André, Asselin, Géraldine, Dubé, Marie-Pierre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5181529/
https://www.ncbi.nlm.nih.gov/pubmed/27497439
http://dx.doi.org/10.1093/bioinformatics/btw487
Descripción
Sumario:Summary: Genotype imputation is now commonly performed following genome-wide genotyping experiments. Imputation increases the density of analyzed genotypes in the dataset, enabling fine-mapping across the genome. However, the process of imputation using the most recent publicly available reference datasets can require considerable computation power and the management of hundreds of large intermediate files. We have developed genipe, a complete genome-wide imputation pipeline which includes automatic reporting, imputed data indexing and management, and a suite of statistical tests for imputed data commonly used in genetic epidemiology (Sequence Kernel Association Test, Cox proportional hazards for survival analysis, and linear mixed models for repeated measurements in longitudinal studies). Availability and Implementation: The genipe package is an open source Python software and is freely available for non-commercial use (CC BY-NC 4.0) at https://github.com/pgxcentre/genipe. Documentation and tutorials are available at http://pgxcentre.github.io/genipe. Contact: louis-philippe.lemieux.perreault@statgen.org or marie-pierre.dube@statgen.org Supplementary information: Supplementary data are available at Bioinformatics online.