Cargando…
Collateral Damage: Detrimental Effect of Antibiotics on the Development of Protective Immune Memory
Antibiotic intervention is an effective treatment strategy for many bacterial infections and liberates bacterial antigens and stimulatory products that can induce an inflammatory response. Despite the opportunity for bacterial killing to enhance the development of adaptive immunity, patients treated...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5181774/ https://www.ncbi.nlm.nih.gov/pubmed/27999159 http://dx.doi.org/10.1128/mBio.01520-16 |
_version_ | 1782485766446776320 |
---|---|
author | Benoun, Joseph M. Labuda, Jasmine C. McSorley, Stephen J. |
author_facet | Benoun, Joseph M. Labuda, Jasmine C. McSorley, Stephen J. |
author_sort | Benoun, Joseph M. |
collection | PubMed |
description | Antibiotic intervention is an effective treatment strategy for many bacterial infections and liberates bacterial antigens and stimulatory products that can induce an inflammatory response. Despite the opportunity for bacterial killing to enhance the development of adaptive immunity, patients treated successfully with antibiotics can suffer from reinfection. Studies in mouse models of Salmonella and Chlamydia infection also demonstrate that early antibiotic intervention reduces host protective immunity to subsequent infection. This heightened susceptibility to reinfection correlates with poor development of Th1 and antibody responses in antibiotic-treated mice but can be overcome by delayed antibiotic intervention, thus suggesting a requirement for sustained T cell stimulation for protection. Although the contribution of memory T cell subsets is imperfectly understood in both of these infection models, a protective role for noncirculating memory cells is suggested by recent studies. Together, these data propose a model where antibiotic treatment specifically interrupts tissue-resident memory T cell formation. Greater understanding of the mechanistic basis of this phenomenon might suggest therapeutic interventions to restore a protective memory response in antibiotic-treated patients, thus reducing the incidence of reinfection. |
format | Online Article Text |
id | pubmed-5181774 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-51817742016-12-27 Collateral Damage: Detrimental Effect of Antibiotics on the Development of Protective Immune Memory Benoun, Joseph M. Labuda, Jasmine C. McSorley, Stephen J. mBio Minireview Antibiotic intervention is an effective treatment strategy for many bacterial infections and liberates bacterial antigens and stimulatory products that can induce an inflammatory response. Despite the opportunity for bacterial killing to enhance the development of adaptive immunity, patients treated successfully with antibiotics can suffer from reinfection. Studies in mouse models of Salmonella and Chlamydia infection also demonstrate that early antibiotic intervention reduces host protective immunity to subsequent infection. This heightened susceptibility to reinfection correlates with poor development of Th1 and antibody responses in antibiotic-treated mice but can be overcome by delayed antibiotic intervention, thus suggesting a requirement for sustained T cell stimulation for protection. Although the contribution of memory T cell subsets is imperfectly understood in both of these infection models, a protective role for noncirculating memory cells is suggested by recent studies. Together, these data propose a model where antibiotic treatment specifically interrupts tissue-resident memory T cell formation. Greater understanding of the mechanistic basis of this phenomenon might suggest therapeutic interventions to restore a protective memory response in antibiotic-treated patients, thus reducing the incidence of reinfection. American Society for Microbiology 2016-12-20 /pmc/articles/PMC5181774/ /pubmed/27999159 http://dx.doi.org/10.1128/mBio.01520-16 Text en Copyright © 2016 Benoun et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Minireview Benoun, Joseph M. Labuda, Jasmine C. McSorley, Stephen J. Collateral Damage: Detrimental Effect of Antibiotics on the Development of Protective Immune Memory |
title | Collateral Damage: Detrimental Effect of Antibiotics on the Development of Protective Immune Memory |
title_full | Collateral Damage: Detrimental Effect of Antibiotics on the Development of Protective Immune Memory |
title_fullStr | Collateral Damage: Detrimental Effect of Antibiotics on the Development of Protective Immune Memory |
title_full_unstemmed | Collateral Damage: Detrimental Effect of Antibiotics on the Development of Protective Immune Memory |
title_short | Collateral Damage: Detrimental Effect of Antibiotics on the Development of Protective Immune Memory |
title_sort | collateral damage: detrimental effect of antibiotics on the development of protective immune memory |
topic | Minireview |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5181774/ https://www.ncbi.nlm.nih.gov/pubmed/27999159 http://dx.doi.org/10.1128/mBio.01520-16 |
work_keys_str_mv | AT benounjosephm collateraldamagedetrimentaleffectofantibioticsonthedevelopmentofprotectiveimmunememory AT labudajasminec collateraldamagedetrimentaleffectofantibioticsonthedevelopmentofprotectiveimmunememory AT mcsorleystephenj collateraldamagedetrimentaleffectofantibioticsonthedevelopmentofprotectiveimmunememory |