Cargando…

Quantification of Warfarin in Dried Rat Plasma Spots by High-Performance Liquid Chromatography with Tandem Mass Spectrometry

This paper presents the development and validation of a novel method for quantification of the oral anticoagulant drug warfarin in dried plasma spots (DPS) by high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Blood plasma was chosen as a biological fluid to preclude...

Descripción completa

Detalles Bibliográficos
Autor principal: Chernonosov, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5183798/
https://www.ncbi.nlm.nih.gov/pubmed/28058133
http://dx.doi.org/10.1155/2016/6053295
Descripción
Sumario:This paper presents the development and validation of a novel method for quantification of the oral anticoagulant drug warfarin in dried plasma spots (DPS) by high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Blood plasma was chosen as a biological fluid to preclude the influence of the hematocrit on the results of the analysis. A 30 μL sample of rat plasma was placed onto Whatman 903 Protein Saver Card and was allowed to dry. A single DPS is sufficient for preparing eight 3.2 mm discs, each containing approximately 1.5–1.6 μL of plasma. Warfarin extraction from one 3.2 mm disc was carried out by adding 200 μL of the acetonitrile : water mixture (1 : 1, v/v) containing 10 mM NH(4)COOH (pH 4.0), with incubation on a shaker at 1000 rpm for 1 h at 25°C. After chromatographic separation, warfarin and coumachlor (an internal standard) were measured using negative-ion multiple-reaction monitoring with ion transitions m/z 307 → 161 for warfarin and m/z 341 → 161 for the internal standard. The working range of this method is 10–10,000 ng/mL. Within this range, intra- and interday variability of precision and accuracy was <13% and recovery was 82–99%. The results indicate that the new method requires only small plasma samples and may be useful for pharmacokinetic research on warfarin.