Cargando…
Representational Distance Learning for Deep Neural Networks
Deep neural networks (DNNs) provide useful models of visual representational transformations. We present a method that enables a DNN (student) to learn from the internal representational spaces of a reference model (teacher), which could be another DNN or, in the future, a biological brain. Represen...
Autores principales: | McClure, Patrick, Kriegeskorte, Nikolaus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5187453/ https://www.ncbi.nlm.nih.gov/pubmed/28082889 http://dx.doi.org/10.3389/fncom.2016.00131 |
Ejemplares similares
-
Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition
por: Spoerer, Courtney J., et al.
Publicado: (2017) -
Corrigendum: Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition
por: Spoerer, Courtney J., et al.
Publicado: (2018) -
Relating Population-Code Representations between Man, Monkey, and Computational Models
por: Kriegeskorte, Nikolaus
Publicado: (2009) -
Estimating How Sounds Modulate Orientation Representation in the Primary Visual Cortex Using Shallow Neural Networks
por: McClure, John P., et al.
Publicado: (2022) -
Representational Similarity Analysis – Connecting the Branches of Systems Neuroscience
por: Kriegeskorte, Nikolaus, et al.
Publicado: (2008)