Cargando…
In Vitro Investigation of Six Antioxidants for Pig Diets
Oxidative stress in the small intestinal epithelium can lead to barrier malfunction. In this study, the effect of rosmarinic acid (RA), quercetin (Que), gallic acid (GA), lipoic acid (LA), ethoxyquin (ETQ) and Se-methionine (SeMet) pre-treatments using 2 mM Trolox as a control on the viability and t...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5187539/ https://www.ncbi.nlm.nih.gov/pubmed/27845706 http://dx.doi.org/10.3390/antiox5040041 |
Sumario: | Oxidative stress in the small intestinal epithelium can lead to barrier malfunction. In this study, the effect of rosmarinic acid (RA), quercetin (Que), gallic acid (GA), lipoic acid (LA), ethoxyquin (ETQ) and Se-methionine (SeMet) pre-treatments using 2 mM Trolox as a control on the viability and the generation of intracellular reactive oxygen species (iROS) of oxidatively (H(2)O(2)) stressed intestinal porcine epithelial cells (IPEC-J2) was investigated. A neutral red assay showed that RA (50–400 µM), Que (12.5–200 µM), GA (50–400 µM), ETQ (6.25–100 µM), and SeMet (125–1000 µM) pre-treatments but not LA significantly increased the viability of H(2)O(2)-stressed IPEC-J2 cells (p < 0.05). A 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H(2)DCFDA) fluorescent probe showed that RA (100–600 µM), Que (25–800 µM), ETQ (3.125–100 µM) and SeMet (500–2000 µM) pre-treatments significantly reduced iROS in IPEC-J2 monolayers (p < 0.05). Moreover, RA and Que were most effective in reducing iROS. Therefore, the effects of RA and Que on barrier functioning in vitro were examined. RA and Que pre-treatments significantly decreased fluorescein isothiocyanate (FITC)-conjugated dextran-4 (4 kDa) permeability and transepithelial electrical resistance (TEER) of an IPEC-J2 cell monolayer (p < 0.05). These in vitro results of RA and Que hold promise for their use as antioxidants in pig feed. |
---|