Cargando…

Ultrafast electronic response of graphene to a strong and localized electric field

The way conduction electrons respond to ultrafast external perturbations in low dimensional materials is at the core of the design of future devices for (opto)electronics, photodetection and spintronics. Highly charged ions provide a tool for probing the electronic response of solids to extremely st...

Descripción completa

Detalles Bibliográficos
Autores principales: Gruber, Elisabeth, Wilhelm, Richard A., Pétuya, Rémi, Smejkal, Valerie, Kozubek, Roland, Hierzenberger, Anke, Bayer, Bernhard C., Aldazabal, Iñigo, Kazansky, Andrey K., Libisch, Florian, Krasheninnikov, Arkady V., Schleberger, Marika, Facsko, Stefan, Borisov, Andrei G., Arnau, Andrés, Aumayr, Friedrich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5187589/
https://www.ncbi.nlm.nih.gov/pubmed/28000666
http://dx.doi.org/10.1038/ncomms13948
_version_ 1782486873508151296
author Gruber, Elisabeth
Wilhelm, Richard A.
Pétuya, Rémi
Smejkal, Valerie
Kozubek, Roland
Hierzenberger, Anke
Bayer, Bernhard C.
Aldazabal, Iñigo
Kazansky, Andrey K.
Libisch, Florian
Krasheninnikov, Arkady V.
Schleberger, Marika
Facsko, Stefan
Borisov, Andrei G.
Arnau, Andrés
Aumayr, Friedrich
author_facet Gruber, Elisabeth
Wilhelm, Richard A.
Pétuya, Rémi
Smejkal, Valerie
Kozubek, Roland
Hierzenberger, Anke
Bayer, Bernhard C.
Aldazabal, Iñigo
Kazansky, Andrey K.
Libisch, Florian
Krasheninnikov, Arkady V.
Schleberger, Marika
Facsko, Stefan
Borisov, Andrei G.
Arnau, Andrés
Aumayr, Friedrich
author_sort Gruber, Elisabeth
collection PubMed
description The way conduction electrons respond to ultrafast external perturbations in low dimensional materials is at the core of the design of future devices for (opto)electronics, photodetection and spintronics. Highly charged ions provide a tool for probing the electronic response of solids to extremely strong electric fields localized down to nanometre-sized areas. With ion transmission times in the order of femtoseconds, we can directly probe the local electronic dynamics of an ultrathin foil on this timescale. Here we report on the ability of freestanding single layer graphene to provide tens of electrons for charge neutralization of a slow highly charged ion within a few femtoseconds. With values higher than 10(12) A cm(−2), the resulting local current density in graphene exceeds previously measured breakdown currents by three orders of magnitude. Surprisingly, the passing ion does not tear nanometre-sized holes into the single layer graphene. We use time-dependent density functional theory to gain insight into the multielectron dynamics.
format Online
Article
Text
id pubmed-5187589
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-51875892017-01-03 Ultrafast electronic response of graphene to a strong and localized electric field Gruber, Elisabeth Wilhelm, Richard A. Pétuya, Rémi Smejkal, Valerie Kozubek, Roland Hierzenberger, Anke Bayer, Bernhard C. Aldazabal, Iñigo Kazansky, Andrey K. Libisch, Florian Krasheninnikov, Arkady V. Schleberger, Marika Facsko, Stefan Borisov, Andrei G. Arnau, Andrés Aumayr, Friedrich Nat Commun Article The way conduction electrons respond to ultrafast external perturbations in low dimensional materials is at the core of the design of future devices for (opto)electronics, photodetection and spintronics. Highly charged ions provide a tool for probing the electronic response of solids to extremely strong electric fields localized down to nanometre-sized areas. With ion transmission times in the order of femtoseconds, we can directly probe the local electronic dynamics of an ultrathin foil on this timescale. Here we report on the ability of freestanding single layer graphene to provide tens of electrons for charge neutralization of a slow highly charged ion within a few femtoseconds. With values higher than 10(12) A cm(−2), the resulting local current density in graphene exceeds previously measured breakdown currents by three orders of magnitude. Surprisingly, the passing ion does not tear nanometre-sized holes into the single layer graphene. We use time-dependent density functional theory to gain insight into the multielectron dynamics. Nature Publishing Group 2016-12-21 /pmc/articles/PMC5187589/ /pubmed/28000666 http://dx.doi.org/10.1038/ncomms13948 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Gruber, Elisabeth
Wilhelm, Richard A.
Pétuya, Rémi
Smejkal, Valerie
Kozubek, Roland
Hierzenberger, Anke
Bayer, Bernhard C.
Aldazabal, Iñigo
Kazansky, Andrey K.
Libisch, Florian
Krasheninnikov, Arkady V.
Schleberger, Marika
Facsko, Stefan
Borisov, Andrei G.
Arnau, Andrés
Aumayr, Friedrich
Ultrafast electronic response of graphene to a strong and localized electric field
title Ultrafast electronic response of graphene to a strong and localized electric field
title_full Ultrafast electronic response of graphene to a strong and localized electric field
title_fullStr Ultrafast electronic response of graphene to a strong and localized electric field
title_full_unstemmed Ultrafast electronic response of graphene to a strong and localized electric field
title_short Ultrafast electronic response of graphene to a strong and localized electric field
title_sort ultrafast electronic response of graphene to a strong and localized electric field
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5187589/
https://www.ncbi.nlm.nih.gov/pubmed/28000666
http://dx.doi.org/10.1038/ncomms13948
work_keys_str_mv AT gruberelisabeth ultrafastelectronicresponseofgraphenetoastrongandlocalizedelectricfield
AT wilhelmricharda ultrafastelectronicresponseofgraphenetoastrongandlocalizedelectricfield
AT petuyaremi ultrafastelectronicresponseofgraphenetoastrongandlocalizedelectricfield
AT smejkalvalerie ultrafastelectronicresponseofgraphenetoastrongandlocalizedelectricfield
AT kozubekroland ultrafastelectronicresponseofgraphenetoastrongandlocalizedelectricfield
AT hierzenbergeranke ultrafastelectronicresponseofgraphenetoastrongandlocalizedelectricfield
AT bayerbernhardc ultrafastelectronicresponseofgraphenetoastrongandlocalizedelectricfield
AT aldazabalinigo ultrafastelectronicresponseofgraphenetoastrongandlocalizedelectricfield
AT kazanskyandreyk ultrafastelectronicresponseofgraphenetoastrongandlocalizedelectricfield
AT libischflorian ultrafastelectronicresponseofgraphenetoastrongandlocalizedelectricfield
AT krasheninnikovarkadyv ultrafastelectronicresponseofgraphenetoastrongandlocalizedelectricfield
AT schlebergermarika ultrafastelectronicresponseofgraphenetoastrongandlocalizedelectricfield
AT facskostefan ultrafastelectronicresponseofgraphenetoastrongandlocalizedelectricfield
AT borisovandreig ultrafastelectronicresponseofgraphenetoastrongandlocalizedelectricfield
AT arnauandres ultrafastelectronicresponseofgraphenetoastrongandlocalizedelectricfield
AT aumayrfriedrich ultrafastelectronicresponseofgraphenetoastrongandlocalizedelectricfield