Cargando…

Histone H3 Methyltransferase Suv39h1 Prevents Myogenic Terminal Differentiation by Repressing MEF2 Activity in Muscle Cells

The myogenic regulatory factors (MRFs) and myocyte enhancer factor 2 (MEF2) transcription factors have been extensively studied as key transcription factors that regulate myogenic gene expression. However, few reports on the molecular mechanism that modulates chromatin remodeling during skeletal mus...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Wei, Shang, Yangyang, Peng, Jian, Jiang, Siwen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5187760/
https://www.ncbi.nlm.nih.gov/pubmed/27916793
http://dx.doi.org/10.3390/ijms17121908
Descripción
Sumario:The myogenic regulatory factors (MRFs) and myocyte enhancer factor 2 (MEF2) transcription factors have been extensively studied as key transcription factors that regulate myogenic gene expression. However, few reports on the molecular mechanism that modulates chromatin remodeling during skeletal muscle differentiation are available. We reported here that the expression of the H3-K9 methyltransferase Suv39h1 was decreased during myoblast differentiation. Ectopic expression of Suv39h1 could inhibit myoblast differentiation, increasing H3-K9 methylation levels, whereas knockdown of Suv39h1 stimulated myoblast differentiation. Furthermore, Suv39h1 interacted with MEF2C directly and inhibited MEF2 transcription activity in a dose-dependent manner. Together, our studies revealed a molecular mechanism wherein Suv39h1 modulated myogenic gene expression and activation during skeletal muscle differentiation.