Cargando…
Low-Dose Methylmercury-Induced Genes Regulate Mitochondrial Biogenesis via miR-25 in Immortalized Human Embryonic Neural Progenitor Cells
Mitochondria are essential organelles and important targets for environmental pollutants. The detection of mitochondrial biogenesis and generation of reactive oxygen species (ROS) and p53 levels following low-dose methylmercury (MeHg) exposure could expand our understanding of underlying mechanisms....
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5187858/ https://www.ncbi.nlm.nih.gov/pubmed/27941687 http://dx.doi.org/10.3390/ijms17122058 |
_version_ | 1782486913840578560 |
---|---|
author | Wang, Xinjin Yan, Mengling Zhao, Lina Wu, Qing Wu, Chunhua Chang, Xiuli Zhou, Zhijun |
author_facet | Wang, Xinjin Yan, Mengling Zhao, Lina Wu, Qing Wu, Chunhua Chang, Xiuli Zhou, Zhijun |
author_sort | Wang, Xinjin |
collection | PubMed |
description | Mitochondria are essential organelles and important targets for environmental pollutants. The detection of mitochondrial biogenesis and generation of reactive oxygen species (ROS) and p53 levels following low-dose methylmercury (MeHg) exposure could expand our understanding of underlying mechanisms. Here, the sensitivity of immortalized human neural progenitor cells (ihNPCs) upon exposure to MeHg was investigated. We found that MeHg altered cell viability and the number of 5-ethynyl-2′-deoxyuridine (EdU)-positive cells. We also observed that low-dose MeHg exposure increased the mRNA expression of cell cycle regulators. We observed that MeHg induced ROS production in a dose-dependent manner. In addition, mRNA levels of peroxisome-proliferator-activated receptor gammacoactivator-1α (PGC-1α), mitochondrial transcription factor A (TFAM) and p53-controlled ribonucleotide reductase (p53R2) were significantly elevated, which were correlated with the increase of mitochondrial DNA (mtDNA) copy number at a concentration as low as 10 nM. Moreover, we examined the expression of microRNAs (miRNAs) known as regulatory miRNAs of p53 (i.e., miR-30d, miR-1285, miR-25). We found that the expression of these miRNAs was significantly downregulated upon MeHg treatment. Furthermore, the overexpression of miR-25 resulted in significantly reducted p53 protein levels and decreased mRNA expression of genes involved in mitochondrial biogenesis regulation. Taken together, these results demonstrated that MeHg could induce developmental neurotoxicity in ihNPCs through altering mitochondrial functions and the expression of miRNA. |
format | Online Article Text |
id | pubmed-5187858 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-51878582016-12-30 Low-Dose Methylmercury-Induced Genes Regulate Mitochondrial Biogenesis via miR-25 in Immortalized Human Embryonic Neural Progenitor Cells Wang, Xinjin Yan, Mengling Zhao, Lina Wu, Qing Wu, Chunhua Chang, Xiuli Zhou, Zhijun Int J Mol Sci Article Mitochondria are essential organelles and important targets for environmental pollutants. The detection of mitochondrial biogenesis and generation of reactive oxygen species (ROS) and p53 levels following low-dose methylmercury (MeHg) exposure could expand our understanding of underlying mechanisms. Here, the sensitivity of immortalized human neural progenitor cells (ihNPCs) upon exposure to MeHg was investigated. We found that MeHg altered cell viability and the number of 5-ethynyl-2′-deoxyuridine (EdU)-positive cells. We also observed that low-dose MeHg exposure increased the mRNA expression of cell cycle regulators. We observed that MeHg induced ROS production in a dose-dependent manner. In addition, mRNA levels of peroxisome-proliferator-activated receptor gammacoactivator-1α (PGC-1α), mitochondrial transcription factor A (TFAM) and p53-controlled ribonucleotide reductase (p53R2) were significantly elevated, which were correlated with the increase of mitochondrial DNA (mtDNA) copy number at a concentration as low as 10 nM. Moreover, we examined the expression of microRNAs (miRNAs) known as regulatory miRNAs of p53 (i.e., miR-30d, miR-1285, miR-25). We found that the expression of these miRNAs was significantly downregulated upon MeHg treatment. Furthermore, the overexpression of miR-25 resulted in significantly reducted p53 protein levels and decreased mRNA expression of genes involved in mitochondrial biogenesis regulation. Taken together, these results demonstrated that MeHg could induce developmental neurotoxicity in ihNPCs through altering mitochondrial functions and the expression of miRNA. MDPI 2016-12-09 /pmc/articles/PMC5187858/ /pubmed/27941687 http://dx.doi.org/10.3390/ijms17122058 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Xinjin Yan, Mengling Zhao, Lina Wu, Qing Wu, Chunhua Chang, Xiuli Zhou, Zhijun Low-Dose Methylmercury-Induced Genes Regulate Mitochondrial Biogenesis via miR-25 in Immortalized Human Embryonic Neural Progenitor Cells |
title | Low-Dose Methylmercury-Induced Genes Regulate Mitochondrial Biogenesis via miR-25 in Immortalized Human Embryonic Neural Progenitor Cells |
title_full | Low-Dose Methylmercury-Induced Genes Regulate Mitochondrial Biogenesis via miR-25 in Immortalized Human Embryonic Neural Progenitor Cells |
title_fullStr | Low-Dose Methylmercury-Induced Genes Regulate Mitochondrial Biogenesis via miR-25 in Immortalized Human Embryonic Neural Progenitor Cells |
title_full_unstemmed | Low-Dose Methylmercury-Induced Genes Regulate Mitochondrial Biogenesis via miR-25 in Immortalized Human Embryonic Neural Progenitor Cells |
title_short | Low-Dose Methylmercury-Induced Genes Regulate Mitochondrial Biogenesis via miR-25 in Immortalized Human Embryonic Neural Progenitor Cells |
title_sort | low-dose methylmercury-induced genes regulate mitochondrial biogenesis via mir-25 in immortalized human embryonic neural progenitor cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5187858/ https://www.ncbi.nlm.nih.gov/pubmed/27941687 http://dx.doi.org/10.3390/ijms17122058 |
work_keys_str_mv | AT wangxinjin lowdosemethylmercuryinducedgenesregulatemitochondrialbiogenesisviamir25inimmortalizedhumanembryonicneuralprogenitorcells AT yanmengling lowdosemethylmercuryinducedgenesregulatemitochondrialbiogenesisviamir25inimmortalizedhumanembryonicneuralprogenitorcells AT zhaolina lowdosemethylmercuryinducedgenesregulatemitochondrialbiogenesisviamir25inimmortalizedhumanembryonicneuralprogenitorcells AT wuqing lowdosemethylmercuryinducedgenesregulatemitochondrialbiogenesisviamir25inimmortalizedhumanembryonicneuralprogenitorcells AT wuchunhua lowdosemethylmercuryinducedgenesregulatemitochondrialbiogenesisviamir25inimmortalizedhumanembryonicneuralprogenitorcells AT changxiuli lowdosemethylmercuryinducedgenesregulatemitochondrialbiogenesisviamir25inimmortalizedhumanembryonicneuralprogenitorcells AT zhouzhijun lowdosemethylmercuryinducedgenesregulatemitochondrialbiogenesisviamir25inimmortalizedhumanembryonicneuralprogenitorcells |